Skip to main content
Log in

Numerical modeling of the propagation of an adiabatic shear band

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The critical phenomena determining the propagation of an adiabatic shear band occur at its extremity. The stress and strain distributions at the tip of a shear band are calculated as a function of applied shear strain using the finite element method for an elasto-plastic material. Three assumptions simplify the calculations considerably: (a) the mechanical response of the material follows an adiabatic stress-strain curve; (b) the material within the shear band has zero shear strength; (c) the body is taken to be in equilibrium. The distribution of stresses and strains in the adiabatically-deformed material is compared to that of a quasi-statically deformed material. While the stress-strain curve for an isothermally deformed material is monotonic with continuous work-hardening, the adiabatic work-hardening curve reaches a plateau followed by work-softening (due to thermal softening). The stress and strain fields for both cases are nearly identical, except in the region directly in front of the shear band. In the adiabatically-deformed material a thin region (~5 μm) with large strains and lowered stresses is produced. This region, in which accelerated deformation takes place as the applied shear deformation increases, is absent in the isothermally-deformed material. The formation of this instability region, ahead of the shear band, is considered to be the mechanism for the propagation of an adiabatic shear band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. Rogers:Ann. Rev. Math. Sci., 1979, vol. 9, pp. 283–311.

    Article  CAS  Google Scholar 

  2. A. J. Bedford, A. L. Wingrove, and K. R.L. Thompson:J. of the Austr. Inst. of Metals, 1974, vol. 19, pp. 61–73.

    CAS  Google Scholar 

  3. G. B. Olson, J. F. Mescall, and M. Azrin: inShock Waves and High- Strain-Rate Phenomena in Metals, M. A. Meyers and L. E. Murr, eds., Plenum Press, New York, NY, 1981, pp. 221–47.

    Google Scholar 

  4. R. F. Recht:J. Appl. Mech. (Trans. A.S.M.E.), 1964, vol. 31, pp. 189–93.

    Google Scholar 

  5. R. S. Culver: inMetallurgical Effects at High Strain Rates, R.W. Rohde, B. M. Butcher, J. R. Holland, and C. H. Karnes, eds., Plenum Press, New York, NY, 1973, pp. 519–30.

    Google Scholar 

  6. D. C. Erlich, D. R. Curran, and L. Seaman: “Further Development of a Computational Shear and Model,” Report AMMRC TR 80-3, SRI- International, Menlo Park, CA, 1980.

    Google Scholar 

  7. R.F. Clifton: inMaterials Response to Ultra-High Loading Rates, W. Herrmann, ed., MMAB-356, National Academy of Sciences, Washington, DC, 1980, p. 129.

    Google Scholar 

  8. Y. L. Bai: in source cited in Ref. 3, pp. 277–84.

  9. C. Zener and J. H. Hollomon:J. Appl. Phys., 1944, vol 15 pp. 22–32.

    Article  Google Scholar 

  10. A. S. Argon: inThe Inhomogeneity of Plastic Deformation, ASM, Metals Park, OH, 1973, pp. 161–89.

    Google Scholar 

  11. M. R. Staker:Acta Metall, 1981, vol. 29, pp. 683–89.

    Article  CAS  Google Scholar 

  12. R. F. Clifton, J. Duffy, K. A. Hartley, and T. G. Shauki:Scripta Met., 1984, vol. 18, pp. 443–48.

    Article  CAS  Google Scholar 

  13. L. S. Costin, E. E. Crisman, R. H. Hanley, and J. Duffy: inSecond Conf. on the Behavior of Materials at High Rates of Strain, Oxford, England, 1979, pp. 90–100.

  14. T. J. Burns and T. G. Trucano:Mechanics of Materials, 1982, vol. 1, pp. 313–24.

    Article  Google Scholar 

  15. D.E. Grady:J. Geophys. Res., 1980, vol. 85, pp. 913–24.

    Article  Google Scholar 

  16. U. S. Lindholm, A. Nagy, G. R. Johnson, and J. M. Hogfeld:J. Eng. Math. and Techn., 1980, vol. 102, pp. 376–81.

    Article  CAS  Google Scholar 

  17. Material Behavior Under High Stress and Ultrahigh Loading Rates, J. Mescall and V. Weiss, eds., Plenum, New York, NY, 1983.

    Google Scholar 

  18. D.C. Erlich, L. Seaman, D. A. Shockey, and D.R. Curran: “Development and Application of a Computational Shear Band Model,” Contract Report ARBL-CR-00416, SRI-International, Menlo Park, CA, March 1980.

    Google Scholar 

  19. D. R. Curran: Computational Model for Armor Penetration, Contract DAAK11-78-C-0115, Report PYU 7893, SRI-International, Menlo Park, CA, November 1979.

    Google Scholar 

  20. D.C. Erlich, L. Seaman, T. Cooper, R.D. Caligiuri, and D.R. Curran: Computational Model for Armor Penetration, Contract DAAK11- 78-0115, Report PYU 7853, SRI-International, Menlo Park, CA, April 1983.

    Google Scholar 

  21. G. L. Moss: in source cited in Ref. 3, pp. 299–312.

  22. H. C. Rogers: inMaterial Behavior under High Stress and Ultrahigh Loading Rates, J. Mescall and V. Weiss, eds., Plenum, New York, NY, 1983, pp. 101–08 (Fig. 4, p. 107).

    Google Scholar 

  23. H.A. Grebe, H-r. Pak, and M.A. Meyers:Metall. Trans. A, 1985, vol. 16A, pp. 761–75 (Fig. 8, p. 767).

    CAS  Google Scholar 

  24. S.P. Timothy and I.M. Hutchings:Acta Metall., 1985, vol. 33, pp. 667–70.

    Article  CAS  Google Scholar 

  25. K. C. Dao and D. A. Shockey:J. Appl. Phys., 1979, vol. 50, pp. 8244–46.

    Article  CAS  Google Scholar 

  26. W. Johnson and P. B. Mellor:Plasticity for Mechanical Engineers, D. Van Nostrand, New York, NY, 1962.

    Google Scholar 

  27. J. L. Swedlow:Computers and Structures, 1973, vol. 3, pp. 879–98.

    Article  Google Scholar 

  28. S. Kuriyama, H. Hayashi, and S. Yoshida: inProceedings of the 4th International Conference on Production Engineering, Tokyo, Japan, 1980, p. 38.

  29. Y. Yamada:Applications of the Finite Element Method, Univ. of Tokyo, Tokyo, Japan, 1972, pp. 149, 315 (in Japanese).

    Google Scholar 

  30. O. E. Zienkiewicz:The Finite Method in Engineering Science, 2nd ed., McGraw-Hill, London, England, p. 50.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuriyama, S., Meyers, M.A. Numerical modeling of the propagation of an adiabatic shear band. Metall Trans A 17, 443–450 (1986). https://doi.org/10.1007/BF02643951

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643951

Keywords

Navigation