Skip to main content
Log in

High temperature embrittlement of NI and Ni-Cr alloys by trace elements

  • Symposium on The Role of Trace Elements and Interfaces in Creep Failure
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The effects of Sb, Sn, and Zr additions on the creep properties of Ni and Ni + 20 pct Cr are reported. Antimony and tin additions (~1 wt pct) induce extensive grain boundary cavitation in nickel, while smaller antimony additions had little effect on Ni + 20 pct Cr. Addition of 0.11 pct Zr to Ni + 20 pct Cr greatly inhibited grain boundary cavitation and reduced its Coble creep rate. Auger electron spectroscopy of cavitated specimens provided direct evidence of impurity segregation to cavity surfaces. Residual sulfur segregated most strongly, and was observed on cavity surfaces in all cavitated specimens. Tin segregated somewhat less intensely than sulfur, and antimony segregated only slightly. Segregation of antimony and sulfur to uncavitated portions of Ni + 1 pct Sb grain boundaries was also observed. These results are discussed in terms of segregation effects on energetic and transport properties of the grain boundaries and cavity surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.D. Merica and R.G. Waltenberg:Trans. AIME, 1925, vol. 71, pp. 709–16.

    Google Scholar 

  2. K. M. Olsen, C. F. Larkin, and P. H. Schmitt, Jr.:Trans. ASM, 1961, vol. 53, pp. 349–58.

    CAS  Google Scholar 

  3. M.G. Lozinskiy, G.M. Volkogon, and N.Z. Pertsovskiy:Russ, Metallurgy, 1967, vol. 5, pp. 65–72.

    Google Scholar 

  4. C.G. Bieter and R.F. Decker:Trans. TMS-A1ME, 1961, vol. 221, pp. 629–36.

    Google Scholar 

  5. C.L. White and R.A. Padgett:Scripta Met., 1982, vol. 16, pp. 461–66.

    Article  CAS  Google Scholar 

  6. I.G. Ivantsov and V.I. Savchenko:Russ. Metallurgy, 1966, vol. 4, pp. 37–41.

    Google Scholar 

  7. D. R. Wood and R. M. Cook:Metallurgia, 1963, vol. 67, pp. 109–17.

    CAS  Google Scholar 

  8. A. D. Merriman:A Concise Encyclopedia of Metallurgy, American Elsevier, New York, NY, 1965, p. 552.

    Google Scholar 

  9. G.M. Volkogon and I.L. Rogel’berg:Tsevetn. Metal., 1964, vol. 37(6), pp. 66–71. Also see English translation inSoviet Journal of Non-Ferrous Metals, 1964, vol. 5-6, pp. 68-72.

    CAS  Google Scholar 

  10. R. J. Brigham, H. Neumayer, and J. S. Kirkaldy:Can. Met. Quart., 1970, vol. 9, pp. 525–29.

    CAS  Google Scholar 

  11. C.L. White, R.A. Padgett, and R. W. Swindeman:Scripta Met., 1981, vol. 15, pp. 777–82.

    Article  CAS  Google Scholar 

  12. H. Conrad: inMechanical Behavior of Materials at Elevated Temperatures, J.E. Dorn, ed., McGraw-Hill, New York, NY, 1961, pp. 218–69.

    Google Scholar 

  13. F. Garofalo:Fundamentals of Creep and Creep Rupture in Metals, MacMillan, New York, NY, 1965, pp. 202–46.

    Google Scholar 

  14. R. W. Balluffi and L. L. Siegle:Acta Met., 1957, vol. 5, pp. 449–54.

    Article  CAS  Google Scholar 

  15. R. Raj and M.F. Ashby:Acta Met., 1975, vol. 23, pp. 653–66.

    Article  Google Scholar 

  16. H. Trinkaus and H. Ullmaier:Phil. Mag. A, 1979, vol. 39, pp. 563–80.

    CAS  Google Scholar 

  17. A. G. Evans, J. R. Rice, and J. P. Hirth:J. Amer. Ceram. Soc, 1980, vol. 63, pp. 368–75.

    Article  CAS  Google Scholar 

  18. C.L. White: inAluminum Lithium Alloys, T. H. Sanders, Jr. and E. A. Starke, Jr., eds., TMS-AIME, Warrendale, PA, 1981, pp. 141–70.

    Google Scholar 

  19. L.-E. Svensson and G.L. Dunlop:International Metals Reviews, 1981, vol. 26, no. 2, pp. 109–31.

    CAS  Google Scholar 

  20. J.W. Hancock:Metal Sci., 1976, vol. 10, pp. 319–25.

    Article  CAS  Google Scholar 

  21. J.W. Gibbs:The Scientific Papers of J. Willard Gibbs, “Thermodynamics,” Dover, NY, 1961, vol. I, pp. 219-331.

  22. E. A. Guggenheim:Thermodynamics, North-Holland, Amsterdam, 1967, pp. 1-60.

  23. D. McLean:Grain Boundaries in Metals, Oxford at the Clarendon Press, 1957, pp. 143-49.

  24. C.L. White and D. F. Stein:Metall. Trans. A, 1978, vol. 9A, pp. 13–22.

    CAS  Google Scholar 

  25. C.L. White and W.A. Coghlan:Metall. Trans. A, 1977, vol. 8A, pp. 1403–12.

    CAS  Google Scholar 

  26. S. Mroz, C. Koziol, and J. Kolaczkiewicz:Vacuum, 1976, vol. 26(2), pp. 61–65.

    Article  CAS  Google Scholar 

  27. J. J. Burton, B. J. Berkowitz, and R.D. Kane:Metall. Trans. A, 1979, vol. 10A, pp. 677–82.

    CAS  Google Scholar 

  28. H.E. Chuang, Z. Szklarska-Smialowska, and R. W. Staehle:Scripta Met., 1979, vol. 13, pp. 753–56.

    Article  Google Scholar 

  29. A.W. Thompson: inGrain Boundaries in Engineering Materials, J. L. Walter, J. H. Westbrook, and D. A. Woodford, eds., Proc. 4th Bolton Landing Conf., 1974, Claitors, Baton Rouge, LA, pp. 607–18.

    Google Scholar 

  30. M.H. Yoo and H. Trinkaus:Metall. Trans. A, 1983, vol. 14A, p. 547.

    Google Scholar 

  31. H. P. Bonzel: inSurface Physics of Materials, J.M. Blakely, ed., Academic Press, New York, NY, 1975, vol. II, pp. 279–338.

    Google Scholar 

  32. V.l. Arkharov and A.A. Pentina:Fiz. metal, metalloved, 1957, vol. 5(1), pp. 68–73.

    CAS  Google Scholar 

  33. M. C. Inman, D. McLean, and H. R. Tipler:Proc. R. Soc. A., 1963, vol. A273, pp. 538–57.

    Google Scholar 

  34. E. D. Hondros and P. J. Henderson:Metall. Trans. A, 1983, vol. 14A, P.

  35. C. Leymonie and P. Lacombe:Mem. Sci. Rev. Metallurg., 1960, vol. LVII(4), pp. 285–90.

    Google Scholar 

  36. P. Gas and J. Bernardini:Surf. Sci., 1978, vol. 72, pp. 365–78.

    Article  CAS  Google Scholar 

  37. M.F. Ashby:Surf. Sci., 1972, vol. 31, pp. 498–542.

    Article  CAS  Google Scholar 

  38. B. Burton, I.G. Crossland, and G.W. Greenwood:Metal Science, 1980, vol. 14(4), pp. 134–36.

    CAS  Google Scholar 

  39. R. Raj and M.F. Ashby:Metall. Trans., 1971, vol. 2, pp. 1113–27.

    Google Scholar 

  40. P. Moulin, A. M. Huntz, and P. Lacombe:Acta Met., 1979, vol. 27, pp. 1431–43.

    Article  CAS  Google Scholar 

  41. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, and R. E. Weber:Handbook of Auger Electron Spectroscopy, Physical Electronics Industries, Eden Prairie, MN, 1976, pp. 59, 77, 93, 159, and 163.

    Google Scholar 

  42. G.K. Wehner:Methods of Surface Analysis, A.W. Czanderna, ed., 1975, Elsevier, New York, pp. 5–37.

    Google Scholar 

  43. C. L. White and R. A. Padgett: unpublished research, Oak Ridge National Laboratory, Oak Ridge, TN, 1981.

  44. C. Lea and M.P. Seah:Surf. Sci., 1975, vol. 53, pp. 272–85.

    Article  CAS  Google Scholar 

  45. G.T. Burstein and J.Q. Clayton:Scripta Met., 1979, vol. 13, pp. 1099–102.

    Article  CAS  Google Scholar 

  46. M.P. Seah and E.D. Hondros:Proc. R.Soc.Lond., 1973, vol. A335, pp. 191–212.

    Google Scholar 

  47. D. McLean:Grain Boundaries in Metals, Oxford at the Clarendon Press, 1976, pp. 131-36.

  48. J.H. Schneitel and C.L. White: unpublished research, Oak Ridge National Laboratory, 1981.

  49. R. A. Mulford, C. J. McMahon, D. P. Pope, and H. C. Feng:Metall. Trans. A, 1976, vol. 7A, pp. 1183–95.

    CAS  Google Scholar 

  50. A. C. Yen, W. R. Graham, and G. R. Belton:Metall. Trans. A, 1978, vol. 9A, pp. 31–34.

    CAS  Google Scholar 

  51. R.F. Decker and J.W. Freeman:Trans. TMS-AIME, 1960, vol. 218, pp. 277–85.

    Google Scholar 

  52. J.E. Doherty, A.F. Giamei, and B.H. Kear:Can. Met. Quart., 1974, vol. 13, pp. 229–36.

    CAS  Google Scholar 

  53. W. C. Johnson, J. E. Doherty, B. H. Kear, and A. F. Giamei:Scripta Met., 1974, vol. 8, pp. 971–74.

    Article  CAS  Google Scholar 

  54. J. A. Schneitel, C. L. White, and R. A. Padgett: inProc. 6th International Conference on the Strength of Metals and Alloys, R. C. Gifkins, ed., Pergamon Press, Oxford, 1982, pp. 649–54.

    Google Scholar 

  55. S. Harper: “Structural Processes in Creep”, Iron Steel Inst., London, 1961, p. 56, cited in Ref. 56.

    Google Scholar 

  56. R.N. Stevens:Met. Rev., Review no. 108, 1966, vol. 11, pp. 129–42.

    Google Scholar 

  57. C.L. White, T.R. Odom, and R.E. Clausing: inMicrostructural Science, D. W. Stevens, G. F. Vander Voort, and J. L. McCall, eds., Elsevier, New York, 1980, vol. 8, pp. 103–14.

    Google Scholar 

  58. C. J. Simpson, W. C. Winegard, and K. T. Aust: inGrain Boundary Structure and Properties, G. A. Chadwick and D. A. Smith, eds., Academic Press, London, 1976, pp. 201–34.

    Google Scholar 

  59. H.C. Chang and N.J. Grant:Trans. AIME, 1953, vol. 197, pp. 1175–80.

    Google Scholar 

  60. E.D. Hondros: inInterfaces, R. C. Gifkins, ed., Butterworths, Sydney, 1969, pp. 77–100.

    Google Scholar 

  61. L. E. Murr:Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA, 1975, p. 111.

    Google Scholar 

  62. H.E. Collins and P. G. Shewmon:Trans. TMS-AIME, 1966, vol. 236, pp. 1354–60.

    CAS  Google Scholar 

  63. J. Bernardini, P. Gas, E. D. Hondros, and M. P. Seah:Proc. R. Soc. Lond. A, 1982, vol. A379, pp. 159–78.

    Google Scholar 

  64. V.T. Borisov, V.M. Golikov, and G. V. Scherbedinskiy:Fiz. metal, metalloved, 1964, vol. 17, pp. 881–85.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on a presentation made at the symposium “The Role of Trace Elements and Interfaces in Creep Failure” held at the annual meeting of The Metallurgical Society of AIME, Dallas, Texas, February 14-18, 1982, under the sponsorship of The Mechanical Metallurgy Committee of TMS-AIME.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, C.L., Schneibel, J.H. & Padgett, R.A. High temperature embrittlement of NI and Ni-Cr alloys by trace elements. Metall Trans A 14, 595–610 (1983). https://doi.org/10.1007/BF02643776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643776

Keywords

Navigation