Skip to main content
Log in

Effect of Sulfur and Antimony on the Intergranular Fracture of Iron at Cathodic Potentials

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Antimony, segregated to grain boundaries of iron, was found to be five times more effective than sulfur in promoting intergranular fracture of iron when tested in IN H2SO4 at cathodic potentials. A decrease in the ductility of iron accompanied the fracture mode change at increasing cathodic potentials. The effectiveness of antimony relative to sulfur was determined from straining electrode tests on iron and iron + 250 appm antimony alloys heat treated at 800 °C and 600 °C to produce different grain boundary chemical compositions. Grain boundary compositions were determined by Auger Electron Spectroscopy (AES). Similar grain boundary sulfur concentrations of 0.2 monolayers were observed by AES for the iron and iron + 250 appm antimony alloy after an anneal of 240 hours at 600 °C, while 0.08 monolayers of antimony was observed for the iron + 250 appm antimony alloy. These results suggest that sulfur and antimony do not compete for grain boundary sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Jones, S. M. Bruemmer, M. T. Thomas, and D. R. Baer:Metall. Trans. A, 1981, vol. 12A, p. 1621.

    Google Scholar 

  2. S. M. Bruemmer, R. H. Jones, M. T. Thomas, and D. R. Baer:Scripta Met., 1980, vol. 14, p. 137.

    Article  CAS  Google Scholar 

  3. K. Yoshino and C. J. McMahon, Jr.:Metall. Trans., 1974, vol. 5, p. 363.

    Article  CAS  Google Scholar 

  4. R. Viswanathan and S. J. Hudak, Jr.:Metall. Trans. A, 1977, vol. 8A, p. 1633.

    CAS  Google Scholar 

  5. C. L. Briant, H. C. Feng, and C. J. McMahon, Jr.:Metall. Trans. A, 1978, vol. 9A, p. 625.

    CAS  Google Scholar 

  6. J.R. Low Jr., D. F. Stein, A. M. Turkalo, and R. P. LaForce:Trans. TMS-AIME, 1968, vol. 242, p. 14.

    CAS  Google Scholar 

  7. H.L. Marcus, L. H. ckett Jr., and P. W. Palmberg:“Temper Embrittlement of Low Alloy Steels,” ASTM STP, 1972, vol. 499, p. 90.

    Google Scholar 

  8. C. L. Smith and J. R. Low Jr.,:Metall. Trans., 1974, vol. 5, p. 279.

    CAS  Google Scholar 

  9. H. Ohtani, H.C. Feng, C.J. McMahon Jr., and R.A. Mulford:Metall. Trans. A, 1976, vol. 7A, p. 87.

    CAS  Google Scholar 

  10. R.M. Latanision and H. Opperhauser:Metall. Trans., 1974, vol. 5, p. 483.

    Article  Google Scholar 

  11. T. Zakroczymski, Z. Szklarska-Smialowska, and M. Smialowski:Werkstoffe und Korrosion, 1976, vol. 27, p. 625.

    Article  CAS  Google Scholar 

  12. E. D. Hondros and M. P. Seah:International Metals Reviews, 1977, vol. 222, p. 262.

    Google Scholar 

  13. L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. F. Riach, and R. E. Weber:Handbook of Auger Electron Spectroscopy, Physical Electronics Industries (Eden Prairie), 1976.

  14. M. P. Seah and W. A. Dench:Surface and Interface Analyses, 1979, vol. 1, p. 2.

    Article  CAS  Google Scholar 

  15. H. J. Grabke, E. M. Petersen, and S. R. Srinivasan:Surf. Sci., 1977, vol. 1, p. 2.

    Google Scholar 

  16. M. T. Thomas, D. R. Baer, R. H. Jones, and S. M. Bruemmer:J. Vac. Sci. and Tech., 1980, vol. 17, p. 25.

    Article  CAS  Google Scholar 

  17. H. Ohtani, H. C. Feng, and C. J. McMahon Jr.:Metall. Trans., 1974, vol. 5, p. 516.

    Article  Google Scholar 

  18. P. V. Ramasubramanian: “Grain Boundary Embrittlement in Iron and Steels,” Ph.D. Thesis, Univ. of Minnesota, Univ. Microfilms, 1971, 72-14, p. 362.

  19. P.W. Palmberg and H.L. Marcus:Trans. ASM, 1969, vol. 62, p. 1016.

    CAS  Google Scholar 

  20. M. Guttman:Surf. Sci., 1975, vol. 53, p. 213.

    Article  Google Scholar 

  21. M. Nageswararao, C.J. Mahon, Jr., and H. Herman:Metall. Trans., 1974, vol. 5, p. 1061.

    Article  CAS  Google Scholar 

  22. M.P. Seah:Surf. Sci., 1975, vol. 53, p. 168.

    Article  CAS  Google Scholar 

  23. N.G. Ainslie and A. V. Seybolt:J. Iron and Steel Inst. (London), 1960, vol. 194, p. 341.

    CAS  Google Scholar 

  24. J. Q. Clayton and G. T. Burstein:Metal Sci., 1979, vol. 13, p. 530.

    Article  CAS  Google Scholar 

  25. G.T. Burstein and J. Q. Clayton:Scripta. Met., 1979, vol. 13, p. 1099.

    Article  CAS  Google Scholar 

  26. M.P. Seah and C. Lea:Phil. Mag., 1975, vol. 31, p. 625.

    Article  Google Scholar 

  27. M. P. Seah and E. D. Hondros:Proc. R. Soc., 1973, vol. 335A, p. 191.

    Google Scholar 

  28. J. Kameda and C. J. McMahon Jr.:Metall. Trans. A, 1980, vol. 11A, p. 91.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.H., Bruemmer, S.M., Thomas, M.T. et al. Effect of Sulfur and Antimony on the Intergranular Fracture of Iron at Cathodic Potentials. Metall Trans A 13, 241–249 (1982). https://doi.org/10.1007/BF02643314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643314

Keywords

Navigation