Skip to main content
Log in

The effect of elastic anisotropy on dislocations in Ni3Fe

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The single crystal elastic constants of Ni3Fe were measured by an ultrasonic interferometric technique in the temperature range -196° to 300°C. Both C11 and C44 decrease with increasing temperature, while C12 remains almost constant below room temperature, then increases with temperature up to 100°C and subsequently decreases as temperature increases further. The constants have been used to calculate 1) the interaction force between parallel Shockley partial dislocations and 2) the energy factor of a straight perfect dislocation as a function of dislocation orientation. While dissociation of a screw dislocation seems quite normal, the forces between partials in a dissociated edge dislocation are attractive at -196° and 100°C. In general, the maximum stacking fault energy for which dissociation is energetically favorable, γm, decreases as temperature increases. Inverse Wulff plots indicate that thea/2 <110> total dislocation in Ni3Fe is stable for all orientations and temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. Reid:Acta Met., 1966, vol. 14, p. 13.

    Article  CAS  Google Scholar 

  2. A. Ball and R. E. Smallman:Acta Met., 1966, vol. 14, p. 1517.

    Article  CAS  Google Scholar 

  3. J. P. Hirth and J. Lothe:Phys. Status Solidi, 1966, vol. 15, p. 847.

    Google Scholar 

  4. E. S. Fisher and D. Dever:Trans. TMS-AIME, 1967, vol. 239, p. 48.

    CAS  Google Scholar 

  5. L. K. France, C. S. Hartley, and C. N. Reid:Metal Sci. J., 1967, vol. 1, p. 65.

    Article  CAS  Google Scholar 

  6. A. J. E. Foreman:Acta Met, 1955, vol. 3, p. 322.

    Article  CAS  Google Scholar 

  7. L. J. Teutonico:Acta Met., 1963, vol. 11, p. 1283,Acta Met, 1965, vol. 13, p. 605.

    Article  CAS  Google Scholar 

  8. E. S. Fisher and L. C. R. Alfred:Trans. TMS-AIME, 1968, vol. 242, p. 1575.

    CAS  Google Scholar 

  9. R. L. VerSnyder, R. B. Barrow, B. J. Piearcey, and L. W. Sink:Trans. Am. Foundry men’s Soc, 1969,vol. 55, p. 10.

    Google Scholar 

  10. H. J. McSkimm:J. Appl Phys., 1955, vol. 26, p. 406.

    Article  Google Scholar 

  11. W. T. Read:Dislocations in Crystal, p. 131, McGraw-Hill Book Co., Inc., New York, 1953.

    Google Scholar 

  12. A. N. Stroh:Phil. Mag., 1958, vol. 3, p. 625.

    Article  CAS  Google Scholar 

  13. Jacques Friedel:Dislocations, p. 151, Addison-Wesley Pub. Co., Massachusetts, 1964.

    Google Scholar 

  14. G. DeWit and J. S. Koehler:Phys. Rev., 1959, vol. 116, p. 1113.

    Article  CAS  Google Scholar 

  15. A. K. Head:Phys. Status Solidi, 1967, vol. 19, p. 185.

    CAS  Google Scholar 

  16. K. Ono and R. Stern:Trans. TMS-AIME, 1969, vol. 245, p. 171.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lii, Y., Hartley, C.S. The effect of elastic anisotropy on dislocations in Ni3Fe. Metall Trans 3, 2115–2118 (1972). https://doi.org/10.1007/BF02643220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643220

Keywords

Navigation