Skip to main content
Log in

Gaseous hydrogen-induced cracking of Ti-5Al-2.5Sn

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The kinetics of hydrogen-induced cracking have been studied in the Ti-5Al-2.5Sn titanium alloy having a structure of acicular α platelets in a β matrix. It was observed that the relationship between hydrogen-induced crack growth rate and applied stress intensity can be described by three separable regions of behavior. The crack-growth rate at low stress-intensity levels was found to be exponentially dependent on stress intensity but essentially independent of temperature. The crack-growth rate at intermediate stress-intensity levels was found to be independent of stress intensity but dependent on temperature in such a way that crack-growth rate was controlled by a thermally activated mechanism having an activation energy of 5500 cal per mole and varied as the square root of the hydrogen pressure. The crack-growth rate at stress-intensity levels very near the fracture toughness is presumed to be independent of environment. The results are interpreted to suggest that crack growth at high stress intensities is controlled by normal, bulk failure mechanisms such as void coalescence and the like. At intermediate stress-intensity levels the transport of hydrogen to some interaction site along the α-β boundary is the rate-controlling mechanism. The crack-growth behavior at low stress intensities suggests that the hydrogen interacts at this site to produce a strain-induced hydride which, in turn, induces crack growth by restricting plastic flow at the crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Nelson, D. P. Williams, and J. E. Stein:Met. Trans., 1972, vol. 3, pp. 469–75.

    CAS  Google Scholar 

  2. H. G. Nelson:Environmental Hydrogen Embrittlement of Titanium-A Qualitative Comparison with Stress-Corrosion Cracking, Proc. of Int. Conf. on Stress Corrosion Cracking Mechanisms in Titanium Alloys, Atlanta, Georgia, 1971, in press.

  3. G. T. Pittinato:Trans. ASM, 1969, vol. 62, pp. 410–17.

    CAS  Google Scholar 

  4. W. D. Bixier:Flaw Growth of Inconel 718 and SAl-2.5Sn (ELl)Titanium in a High Purity Gaseous Hydrogen Environment, Aerojet Nuclear Systems Co., NERVA Programs, Contract SNP-1, Aug. 1970.

  5. C. M. Carman and D. E. Schillinger:ASME Publ. 70-MET-4, 1970.

  6. S. Mostovoy, P. B. Crosley, and E. I. Ripling:J. Mater., 1967, vol. 2, no. 3, pp. 661–81.

    Google Scholar 

  7. T. R. Beck, M. J. Blackburn, and M. 0. Speidel: Contract NAS7489, Quarterly Progress Rept. No. 11, Boeing Company, March 1967.

  8. W. F. Brown:Amer. Soc. Test. Mater, Special Tech. Publ. No. 463, 1970.

  9. C. F. Tiffany, P. M. Lorenz, and L. R. Hall:NASA CR-54837, February, 1966.

  10. S. M. Wiederhorn:Int. J. Fract. Mech., 1968, vol. 4, no. 2, pp. 171–77.

    Google Scholar 

  11. C. S. Carter: DG-25274, The Boeing Company, May 1970.

  12. R. P. Wei and J. P. Landes:Mater. Res. Stand., 1969, vol. 9, pp. 25–29.

    Google Scholar 

  13. J. D. Boyd, P. J. Moreland, W. K. Boyd, R. A. Wood, D. N. Williams, and R. I. Jaffee:NASA CR-1846, October 1971.

  14. C. S. Carter:Eng. Fract. Mech., 1971, vol. 3, no. 1, pp. 1–13.

    Article  Google Scholar 

  15. S. Mostovoy, H. R. Smith, R. G. Lingwall, and E. J. Ripling:Eng. Fract. Mech, 1971, vol. 3, no. 3, pp. 291–99.

    Article  CAS  Google Scholar 

  16. A. B. J. Clark and G. R. Irwin:Exp. Mech. SESA, 1966, vol. 6, pp. 321–39.

    Article  Google Scholar 

  17. D.P. Williams and H.G. Nelson:Met. Trans., 1970, vol. 1, pp. 63–68.

    CAS  Google Scholar 

  18. H. G. Nelson, D. P. Williams, and A. S. Tetelman:Met. Trans., 1971, vol. 2, pp. 953–59.

    CAS  Google Scholar 

  19. J. H. De Boer:The Dynamical Character of Adsorption, Oxford, London, 1953.

  20. W. R. Holman, R. W. Crawford, and F. Paredes:Trans. TMS-AIME, 1965, vol. 233, pp. 1836–39.

    CAS  Google Scholar 

  21. R. J. Wasilewski and G. L. Kehl:Metallurgia, 1954, vol. 50, pp. 225–30.

    Google Scholar 

  22. J. D. Boyd:Trans. ASM, 1969, vol. 62, pp. 977–88.

    CAS  Google Scholar 

  23. E. L. Owen, F. H. Beck, and M. G. Fontana: Contract NGL-36-008-051, Semiannual Rept., Ohio State University, Dec. 1970.

  24. R. P. Allen, R. Taggart, and D. H. Polonis:Acta Met., 1966, vol. 14, pp. 741–47.

    Article  CAS  Google Scholar 

  25. R. S. Vitt:Hydride Precipitationim Titanium, Ph.D. Thesis in Engineering, UCLA, 1969.

  26. A. H. Cottrell:Theoretical Structural Metallurgy, St. Martins Press Inc., New York, 1960.

    Google Scholar 

  27. G. R. Irwin and J. A. Kies:Welding Research Supplement, 1954, pp. 1935–85.

  28. R. G. Hoagland:Trans. ASME, Ser. D-J. Basic Eng., 1967, vol. 89, pp. 525–32.

    Google Scholar 

  29. C. N. Freed and J. M. Krafft:J. Mater., 1966, vol. 1, no. 4, pp. 740–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D.P., Nelson, H.G. Gaseous hydrogen-induced cracking of Ti-5Al-2.5Sn. Metall Trans 3, 2107–2113 (1972). https://doi.org/10.1007/BF02643219

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643219

Keywords

Navigation