Skip to main content
Log in

Temper embrittlement and intergranular segregation of antimony: A quantitative analysis performed with the backscattering of energetic ions

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The intergranular segregation of antimony associated with temper embrittlement in a low carbon manganese steel was quantitatively studied through the backscattering of MeV12C12+ and1214N12+ ions. The principles of the technique and its application to interface segregation problems are briefly explained and its main advantages discussed. The influence of various heat treatments was investigated and shown to strongly influence the segregation taking place in the α field. Segregation could not be detected in the γ field. The kinetics of the phenomenon in the critical range (400° to 600°C) is described. The role of the micro-structure was studied and it is shown that segregation does not occur only at the previous austenitic grain boundaries but at all the disordered high angle boundaries of the structure. The grain boundary Sb content after a reversion and a resegregation treatment was also studied. The results are interpreted in terms of a reversible type of segregation taking place entirely in the α phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Harris:J. Appl. Phys., 1969, vol. 1, p. 39.

    Google Scholar 

  2. H. L. Marcus and P. W. Palmberg:Trans. TMS-AIME., 1969, vol. 245, p. 1664.

    CAS  Google Scholar 

  3. D. F. Stein, A. Joshi, and R. P. Laforce:Trans. ASM., 1969, vol. 62, p. 776.

    CAS  Google Scholar 

  4. A. Joshi and D. F. Stein:Met. Trans., 1970, vol. 1, p. 2543.

    Article  CAS  Google Scholar 

  5. A. Joshi and D. F. Stein:J. Inst. Met., 1971, vol. 99, p. 178.

    CAS  Google Scholar 

  6. R. Viswanathan:Met. Trans., 1971, vol. 2, p. 809.

    Article  CAS  Google Scholar 

  7. E. D. Hondros and M. P. Seah:Scr. Met., 1972, vol. 6, p. 1007.

    Article  CAS  Google Scholar 

  8. M. Guttmann, P. R. Krahe, F. Abel, G. Amsel, M. Bruneaux, and C. Cohen:Scr. Met., 1971, vol. 5, p. 479.

    Article  CAS  Google Scholar 

  9. M. Guttmann, P. R. Krahe, F. Abel, M. Bruneaux, and C. Cohen:Scr. Met., 1973, vol. 7, p. 93.

    Article  CAS  Google Scholar 

  10. P. A. Restaino and C. J. McMahon, Jr.:Trans. ASM., 1967, vol. 60, p. 699.

    CAS  Google Scholar 

  11. C. J. McMahon, Jr.: inTemper Embrittlement in Steel, p. 127, ASTM STP 407, Philadelphia, Pa., 1968.

  12. F. Abel, G. Amsel, M. Bruneaux, C. Cohen, B. Maurel, S. Rigo, and J. Roussel: Proceedings of International Conference on Modern Trends in Activation Analysis, Saclay, 2–6 Oct. 1972;J. Radional. Chem., in press.

  13. M. A. Nicolet, J. W. Mayer, and U. V. Mitchell:Science, 1972, vol. 177, p. 841.

    Article  CAS  Google Scholar 

  14. F. Abel:Bull. Soc. Fr. Mineral. Cristallogr., 1972, vol. 95, p. 658.

    CAS  Google Scholar 

  15. R. C. Northcliffe and R. F. Schilling:Nucl. Data Tables, 1970, ser. A, vol. 252, no. 3-4, p. 233.

    Article  Google Scholar 

  16. G. Amsel, J. P. Nadai, E. d’Artemare, D. David; E. Girard, and J. Moulin:Nucl. Instrum. Methods, 1971, vol. 92, p. 481.

    Article  CAS  Google Scholar 

  17. G. Amsel, R. Bosshard, and C. Zajde:IEEE. Trans. Nucl. Sci., 1967, N.S. 14, no. l, p. 1.

  18. J. M. Capus: inTemper Embrittlement in Steel, p. 3, ASTM STP 407, Philadelphia, Pa. 1968.

  19. P. R. Krahe and M. Guttmann:Scr. Met., 1973, vol. 7, no. 4, p. 387.

    Article  CAS  Google Scholar 

  20. M. Guttmann and P. R. Krahe:Mem. Sci. Rev. Met., 1973, vol. 70, no. 9.

  21. D. Guttmann and P. R. Krahe:Mem. Sci. Rev. Met., 1973, vol. 70, no. 7–8.

  22. J. M. Capus:J. Iron Steel Inst, 1962, vol. 200, p. 922.

    CAS  Google Scholar 

  23. M. Guttmann and P. R. Krahe:C. R. Acad. Sci. Paris., 1971, ser. C, vol. 273, p. 1327.

    Google Scholar 

  24. G. Vidal:Rev. Met., 1945, vol. 42, p. 149.

    Article  CAS  Google Scholar 

  25. F. L. Carr, M. Goldman, L. D. Jaffe, and D. C. Buffum:Trans. TMS-AIME, 1953, vol. 197, p. 998.

    Google Scholar 

  26. E. D. Hondros and D. McLean:Surface Energies of Solid Metals and Alloys, Sci. Monograph no. 28, p. 29. London, 1968.

  27. P. W. Palmberg and H. L. Marcus:Trans. ASM., 1969, vol. 62, p. 1016.

    CAS  Google Scholar 

  28. A. Joshi and D. F. Stein: inTemper Embrittlement of Alloy Steel, p. 59, ASTM STP 499, Philadelphia, Pa., 1972.

  29. G. Bruggeman and J. Roberts: paper presented at the 1968 fall meeting of the AIME, Detroit, Oct. 1968. Abstracts inJ. Met., 1968, vol. 20. no. 8, p. 76, andDiff. Data. 1968, vol. 2, no. 3–4, p. 286.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guttmann, M., Krahe, P.R., Abel, F. et al. Temper embrittlement and intergranular segregation of antimony: A quantitative analysis performed with the backscattering of energetic ions. Metall Trans 5, 167–177 (1974). https://doi.org/10.1007/BF02642941

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642941

Keywords

Navigation