Skip to main content
Log in

The influence of elastic anisotropy on dislocation stability in /gb-tin and lead

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The effects of elastic anisotropy on the energy and thermodynamic stability of dislocations in β-tin and lead were assessed through computation of the dislocation energy factorK. The energy factors were utilized to construct an inverse Wulff plot, from which unstable dislocation orientations are defined by concave regions of the construction. Dislocation instabilities are predicted for β-tin near the melting point for four of six slip systems considered, the slip systems displaying the instabilities being (110) [001], (100) [001], (010) [101], and (101)[101]. An instability is predicted also for the slip system {111} <111> in lead, which is the first fcc metal found to display sufficient elastic anisotropy for instability. For the metals examined in this paper, the angular range over which instabilities occur narrows with decreasing temperature, and usually, below some critical temperature, the dislocation line becomes stable over all orientations. The occurrence of dislocation instabilities is a direct result of elastic anisotropy, and their possible influence on physical properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.de Wit and J. S. Koehler:Phys. Rev., 1959, vol. 116, pp. 1113–20.

    Article  Google Scholar 

  2. W. W. Mullins: chapter inMetal Surfaces: Structure, Energetics and Kinetics, p. 17, American Society for Metals, Metals Park, Ohio, 1963.

    Google Scholar 

  3. A. K. Head:Phys. Status Solidi, 1967, vol. 19, pp. 185–92.

    Article  CAS  Google Scholar 

  4. F. C. Frank: chapter inMetal Surfaces: Structure, Energetics and Kinetics, p. 1, American Society for Metals, Metals Park, Ohio, 1963.

    Google Scholar 

  5. A. K. Head, M. H. Loretto, and P. Humble:Phys. Status Solidi, 1967, vol. 20, pp. 505–19.

    Article  CAS  Google Scholar 

  6. A. K. Head, M. H. Loretto, and P. Humble:Phys. Status Solidi, 1967, vol. 20, pp. 521–36.

    Article  CAS  Google Scholar 

  7. E. S. Fisher and L. C. R. Alfred:Trans. TMS-AIME, 1968, vol. 242, pp. 1575–86.

    CAS  Google Scholar 

  8. J. L. Routbort, C. N. Reid, E. S. Fisher, and D. J. Dever:Acta Met., 1971, vol. 19, pp. 1307–16.

    Article  CAS  Google Scholar 

  9. R. A. Masumura, C. L. Vold, and M. E. Glicksman:Scripta Met., 1972, vol. 6, pp. 607–10.

    Article  CAS  Google Scholar 

  10. Y. T. Chou and G. T. Sha:Phys. Status Solidi (a), 1971, vol. 6, pp. 505–13.

    Article  CAS  Google Scholar 

  11. M. H. Loretto and R. J. Wasilewski:Phil. Mag., 1971, vol. 24, pp. 1311–28.

    Article  Google Scholar 

  12. Y. Lii and C. S. Hartley:Met. Trans., 1972, vol. 3, pp. 2115–18.

    Article  CAS  Google Scholar 

  13. E. W. Kammer, L. C. Cardinal, C. L. Vold, and M. E. Glicksman:J. Phys. Chem. Solids, 1972, vol. 33, pp. 1891–98.

    Article  CAS  Google Scholar 

  14. E. W. Kammer: Naval Research Laboratory, Washington, D. C, unpublished research, 1971.

  15. J. A. Rayne and B. S. Chandrasekhar:Phys. Rev., 1960, vol. 120, pp. 1658–63.

    Article  CAS  Google Scholar 

  16. D. L. Waldorf and G. A. Alers:J. Appl. Phys., 1962, vol. 33, pp. 3266–69.

    Article  CAS  Google Scholar 

  17. J. D. Eshelby, W. T. Read, and W. Shockley:Acta Met., 1953, vol. 1, pp. 251–59.

    Article  Google Scholar 

  18. A. N. Stroh:Phil. Mag., 1958, vol. 3, pp. 625–46.

    Article  CAS  Google Scholar 

  19. A. J. E. Foreman:Acta Met., 1955, vol. 3, pp. 322–30.

    Article  CAS  Google Scholar 

  20. J. P. Hirth and J. Lothe:Theory of Dislocations, p. 419, McGraw-Hill, New York, 1968.

    Google Scholar 

  21. A. K. Head:Phys. Status Solidi, 1964, vol. 6, pp. 461–65.

    Article  Google Scholar 

  22. L. K. France, C. S. Hartley, and C. N. Reid:Metal Sci. J., 1967, vol. 1, pp. 65–70.

    Article  CAS  Google Scholar 

  23. J. Friedel:Dislocations, p. 458, Pergamon Press, Oxford, 1964.

    Google Scholar 

  24. A. K. Head:Phys. Rev. Letters, 1967, vol. 18, pp. 484–85.

    Article  CAS  Google Scholar 

  25. K. Ishii:J. Phys. Soc. Japan, 1970, vol. 28, pp. 168–76.

    Article  CAS  Google Scholar 

  26. K. Ishii:J. Phys. Soc. Japan, 1970, vol. 28, pp. 1494–99.

    Article  CAS  Google Scholar 

  27. J. D. Eshelby:Phil. Mag., 1949, vol. 40, pp. 903–12.

    Article  CAS  Google Scholar 

  28. C. N. Reid:Acta Met., 1966, vol. 14, pp. 13–16.

    Article  CAS  Google Scholar 

  29. N. S. Brar and W. R. Tyson:Can. J. Phys., 1972, vol. 50, pp. 2257–64.

    Article  CAS  Google Scholar 

  30. M. H. Yoo and C. T. Wei:J. Appl. Phys., 1967, vol. 38, pp. 4317–22.

    Article  CAS  Google Scholar 

  31. A. Ball and R. E. Smallman:Acta Met., 1966, vol. 14, pp. 1517–26.

    Article  CAS  Google Scholar 

  32. W. K. Burton, N. Cabrera, and F. C. Frank:Phil. Trans. Roy. Soc., 1951, vol. 243A, pp. 351–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vold, C.L., Masumura, R.A. & Glicksman, M.E. The influence of elastic anisotropy on dislocation stability in /gb-tin and lead. Metall Trans 5, 135–141 (1974). https://doi.org/10.1007/BF02642937

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642937

Keywords

Navigation