Skip to main content
Log in

Effect of elevated temperature exposure on the structure, stability, and mechanical behavior of aluminum-stainless steel composites

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

The effect of elevated temperature exposure on subsequent ambient temperature tensile behavior of aluminum-stainless steel composities (V f= 6.5 pct) has been studied. In particular, ambient temperature tensile yielding, flow, and fracture were correlated with the associated interface microstructures, matrix substructure, and fracture morphology in the as-pressed condition and following elevated-temperature exposure at 550°C (823 K) or 625°C (898 K) for 24 h (86.4 ks). Compared to the as-pressed condition, exposure at either temperature results in a small increase (≲4 pet) in initial modulus, and a decrease in the level of residual stress (tensile) in the matrix; tensile stress-strain behavior in stage II (matrix plastic, reinforcement elastic) is essentially unaffected. Lower strength levels in stage III (matrix and reinforcement plastic) after exposure are due to premature cracking in the interface reaction zone, primarily a ternary (Fe, Cr) Al intermetallic, with associated notch effects on the wire reinforcement. Changes in fracture surface morphology of the composites confirm the degradation. Wires extracted from composites after hot pressing or following exposure at 550°C (823 K) possess a unique strength. Exposure at 625°C (898 K) leads to a bimodal distribution in the strength of extracted wires. In each condition, a matrix dislocation cell structure develops in stage III; the invariant form and size of the cell structure withV f and distance from the matrix wire interface confirm isostrain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Salkind:Interfaces in Composites, ASTM STP No. 452, 1969, p. 149.

  2. B. J. Bayles, J. A. Ford, and M. J. Salkind:Trans. TMS-A1ME, 1967, vol. 239, p. 844.

    CAS  Google Scholar 

  3. N. Parratt:Chem. Eng. Progr., 1966, vol. 62, p. 61.

    CAS  Google Scholar 

  4. D. W. Petrasek and J. W. Weeton:Trans. TMS-AIME, 1964, vol. 230, p. 977.

    CAS  Google Scholar 

  5. D. W. Petrasek:Trans. TMS-A1ME, 1966, vol. 236, p. 887.

    CAS  Google Scholar 

  6. E. M. Breinan and K. G. Kreider:Met. Trans., 1970, vol. 1, p. 93.

    Article  CAS  Google Scholar 

  7. K. G. Kreider, L. Dardi, and K. Prewo:Metal Matrix Composite Technology, United Aircraft Research Laboratories, Tech. Report No. AFML-TR-70-193, July, 1970.

  8. I. D. Blucher, W. R. Spencer, and W. F. Stuhrke:Transmission and Scanning Electron Microscopy of Boron-Aluminum Interfaces, 17th Refractory Composites Working Group, Williamsburg, Va., June 1970.

  9. A. G. Metcalfe:J. Compos. Mater, 1967, vol. 1, p. 356.

    Article  CAS  Google Scholar 

  10. P. W. Jackson and J. R. Marjoram:J. Mater. Sci., 1970, vol. 5, p. 9.

    Article  CAS  Google Scholar 

  11. R. E. Tressler and T. L. Moore:Metals Eng. Quart., 1971, vol. 11, no. 1, p. 16.

    Google Scholar 

  12. M. R. Pinnel and A. Lawley:Met. Trans., 1970, vol. 1, p. 1337.

    Article  CAS  Google Scholar 

  13. M. R. Pinnel and A. Lawley:Met. Trans., 1971, vol. 2, p. 1415.

    Article  CAS  Google Scholar 

  14. M. E. Fint:ASTM Bull., No. 181, 1952, p. 20.

  15. A. R. Zecca, D. R. Hay, and H. Krajewski: TMS-AIME Spring Meeting, DMIC Memorandum 243, 1969, p. 65.

  16. M. R. Pinnel and A. Lawley:Proc. Electron Microscopy Soc. Amer., 26th Meeting, 1968, p. 34.

  17. H. W. Rauch, W. H. Sutton, and L. E. McCreight: AFML-TR-66-365, 1966, p. 31.

  18. T. Henmann and S. Dittrich:Z. Metallk., 1959, vol. 50, p. 617.

    Google Scholar 

  19. A. K. Kurakin:Phys. Metals Metallogr., 1970, vol. 30, p. 216.

    Google Scholar 

  20. H. R. Lee, D. A. Ryder, and T. J. Davies:Int. J. Mech. Sci., 1970, vol. 12, p. 739.

    Article  Google Scholar 

  21. C. Schoene and E. Scala:Met. Trans., 1970, vol. 1, p. 3466.

    Article  CAS  Google Scholar 

  22. L. Roesch and G. Henry:Electron Fractography, Special Techn. Pub. No. 453, American Society for Testing and Materials, 1969, p. 3.

  23. E. R. Thompson, D. A. Koss, and J. C. Chestnutt:Met. Trans., 1970, vol. 1, p. 2807.

    Article  CAS  Google Scholar 

  24. R. W. Heckel, R. J. Zaehring, and H. P. Cheskis:Met. Trans., 1972, vol. 3, p. 2507.

    Article  CAS  Google Scholar 

  25. H. P. Cheskis and R. W. Heckel:Met. Trans., 1970, vol. l, p. 1793.

    Google Scholar 

  26. A. A. Baker,Appl. Mater. Res., 1966, vol. 5, p. 143.

    CAS  Google Scholar 

  27. A. G. Metcalfe and G. K. Schmitz:Proc. ASTM, 1964, vol. 64, p. 1075.

    Google Scholar 

  28. B. W. Rosen:Fiber Composite Materials, ASM, 1965, p. 37.

  29. P. M. Scop and A. S. Argon:SAMPE. Proc., 1966, vol. 10, p. G-21.

    Google Scholar 

  30. B. W. Rosen:Proc. Roy. Soc., London, 1970, vol. A319, p. 79.

    Google Scholar 

  31. C. Zweben:AIAA J., 1968, vol. 6, p. 2325.

    Article  Google Scholar 

  32. C. Zweben and B. W. Rosen:J. Mech. Phys. Solids, 1970, vol. 18, p. 189.

    Article  Google Scholar 

  33. P. R. Swann:Electron Microscopy and Strength of Crystals, G. Thomas and J. Washburn, Eds., p. 131, Interscience, New York, 1963.

    Google Scholar 

  34. J. R. Hancock,J. Compos. Mater., 1967, vol. 1, p. 136.

    Article  CAS  Google Scholar 

  35. J. R. Hancock and J. C. Grosskrentz:Metal Matrix Composities, ASTM, Special Tech. Publ. No. 438, 1968, p. 134.

  36. K. K. Chawla and M. Metzger,J. Mater. Sci., 1972, vol. 7, p. 34.

    Article  CAS  Google Scholar 

  37. A. Kelly and H. Lilholt:Phil. Mag., 1969, vol. 20, p. 311.

    Article  CAS  Google Scholar 

  38. G. Garmong and L. A. Shepard:Met. Trans., 1971, vol. 2, p. 175.

    Article  CAS  Google Scholar 

  39. W. W. Gerberich:J. Mater. Sci., 1970, vol. 5, p. 283.

    Article  CAS  Google Scholar 

  40. W. W. Gerberich:J. Mech. Phys. Solids, 1971, vol. 19, p. 71.

    Article  CAS  Google Scholar 

  41. K. F. J. Heinrich,Quantitative Electron Probe Microanalysis, National Bureau of Standards Sp. Publ., 1958, p. 298.

  42. Aluminum in Iron and Steel, S. L. Case and K. R.Van Horn, Eds., p. 273, John Wiley, New York, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with Drexel University, is Research Metallurgist, Franklin Institute Research Laboratories, Philadelphia, Pa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattnaik, A., Lawley, A. Effect of elevated temperature exposure on the structure, stability, and mechanical behavior of aluminum-stainless steel composites. Metall Trans 5, 111–122 (1974). https://doi.org/10.1007/BF02642934

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642934

Keywords

Navigation