Skip to main content
Log in

Kinetics of the carbon-oxygen reaction in molten iron

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The kinetics of carbon monoxide absorption by stagnant liquid iron has been investigated over the first 10 min or so of gas-liquid metal contact. On the basis of experiments conducted at temperatures ranging between 1580° and 1700°C (PCO= 1 atm) and carbon monoxide pressures ranging between 0.1 and 1.5 atm (at 1600†C), it was concluded that the absorption kinetics of CO in liquid iron was diffusion controlled. Mass transfer equations developed to describe the process were adapted to define an “apparent diffusion coefficient” of carbon monoxide. This coefficient is a function of carbon and oxygen binary diffusion coefficients, and also depends on the initial bulk oxygen and carbon concentrations, and on the equilibrium constant for the reaction. CO = C + O Experimental DCOvalues averaged at 9.8 10−5cm2s−1, while binary carbon and oxygen diffusivities were computed to be 41.2 10−5 and 5.2 10−T5cm2s−1 respectively. Using the data obtained, the relative influence of carbon and oxygen diffusion on the kinetics of carburization and decarburization reactions is quantitatively considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Whiteway, R. J. W. Peters, W. D. Jamieson, and R. Masson:Can. Met. Quart., 1968, vol. 7, pp. 211–15.

    Article  Google Scholar 

  2. N. A. D. Parlée, S. R. Seagle, and R. Schumann, Jr.:Tram. TMS-AIME, 1958, vol. 212, pp. 132–38.

    Google Scholar 

  3. T. King, R. A. Karasev, and P. Dastur:The Interaction of Carbon Monoxide and Liquid Iron;Ch. in Heterogeneous Kinetics at Elevated Temperatures, pp. 409–30, Plenum Press, 1970.

  4. L. A. Baker, N. A. Warner, and A. E. Jenkins:Trans. TMS-AIME, 1967, vol. 239, pp. 857–64.

    Google Scholar 

  5. P. A. Distin, G. D. Hallet, and F. D. Richardson:J Iron Steel Inst, 1968, vol. 206, pp. 821–33.

    Google Scholar 

  6. W. D. Jamieson and R. Masson:J. Amer. Chem. Soc, 1967, vol. 84, pp. 4084–89.

    Article  Google Scholar 

  7. J. H. Swisheŕ and E. T. Turkdogan:Trans. TMS-AIME, 1967, vol. 239, pp. 602–10.

    Google Scholar 

  8. M. Y. Solar and R. I. L. Guthrie:Met. Trans., 1971, vol. 2, pp. 457–64.

    Article  Google Scholar 

  9. J. R. Manning:Met. Trans., 1970, vol. 1, pp. 499–505.

    Article  Google Scholar 

  10. M. Y. Solar: Ph.D. Thesis, McGill University, Montreal, 1971.

  11. J. D. Fast:Interactions of Metals and Gases, vol. 1, p. 110, Academic Press, New York and London, 1965.

    Google Scholar 

  12. J. F. Elliott and M. Gleiser:Thermochemistry of Steel making, vol. 1, p. 9, Addison-Wesley, Reading-London, 1960.

    Google Scholar 

  13. I. A. Novokhatskiy and G. S. Ershov:Russ. Met, 1967, no. 2, pp. 20–22.

  14. J. B. Edwards, E. E. Hucke, and J. J. Martin:Metals Mater., 1968,Met. Rev., 120 (Pt. 1 and 11).

  15. W. F. Holbrook, E. Furnas, and T. L. Joseph:Ind. Eng. Chem., 1933, vol. 24, pp. 993–95.

    Google Scholar 

  16. D. W. Morgan and J. A. Kitchener:Trans. Farad. Soc, 1954, vol. 50, pp. 51–60.

    Article  Google Scholar 

  17. R. E. Grace and G. Derge:Trans. TMS-AIME, 1958, vol. 212, pp. 331–37.

    Google Scholar 

  18. M. Hillert and N. Lange:J. Iron Steel Inst., 1965, vol. 203, pp. 273–74.

    Google Scholar 

  19. P. M. Shurygin and V. I. Kryuk:Russ. Met. Mining, 1963, no. 3, pp. 53–55.

  20. I. A. Novokhatskiy and G. S. Ershov:Russ. Met, 1967, no. 2, pp. 20–22.

    Google Scholar 

  21. K. Schwerdtfeger:Trans. TMS-AIME, 1967, vol. 239, pp. 134–38.

    Google Scholar 

  22. R. L. McCarron and G. R. Belton:Trans. TMS-AIME, 1969, vol. 245, pp. 1161–66.

    Google Scholar 

  23. J. B. Edwards, E. E. Hucke, and J. J. Martin:Metals Mater., 1968,Met. Rev. 120 (Pt. I and II).

  24. R. J. Reynik:Trans. TMS-AIME, 1969, vol. 245, pp. 75–81.

    Google Scholar 

  25. J. Li and P. Chang:J. Chem. Phys., 1955, vol. 23, pp. 518–20.

    Article  Google Scholar 

  26. H. Eyring, T. Ree, D. M. Grant, and R. Hirst:Z. Elecktrochem., 1960, vol. 64, pp. 146–52.

    Google Scholar 

  27. R. B. Bird, W. E. Stewart, and E. N. Lightfoot:Transport Phenomena, pp. 510–15, John Wiley and Sons, New York, 1966.

    Google Scholar 

  28. H.A. Walls and W. R. Upthegrove:Acta Met., 1964, vol. 12, pp. 461–71.

    Article  Google Scholar 

  29. M. H. Cohen and D. Turnbull:J. Chem. Phys., 1959, vol. 31, pp. 1164–69.

    Article  Google Scholar 

  30. R. A. Swalin:Acta Met., 1959, vol. 7, pp. 736–40.

    Article  Google Scholar 

  31. P. V. Danckwerts:Ind. Eng. Chem., 1951, vol. 43, no. 6, pp. 1460–67.

    Article  Google Scholar 

  32. D. J. Carney:Gases in Liquid Iron and Steel, Ch. in Gases in Metals, ASM, Cleveland, Ohio, 1953, pp. 69–118.

    Google Scholar 

  33. A. Decker and P. Metz:Iron Coal Trades Rev., 1960, vol. 181, p. 1407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, McGill University, Montreal, Quebec, Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solar, M.Y., Guthrie, R.I.L. Kinetics of the carbon-oxygen reaction in molten iron. Metall Trans 3, 713–722 (1972). https://doi.org/10.1007/BF02642756

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642756

Keywords

Navigation