Metallurgical and Materials Transactions B

, Volume 3, Issue 7, pp 1959–1965 | Cite as

The role of grain boundary migration during low-cycle fatigue of α-iron at 450° to 700°C

  • H. J. Westwood
  • D. M. R. Taplin
Mechanical Behavior


Low-cycle fatigue tests have been carried out on α-iron over the temperature range 450° to 700°C. With increasing temperature, the number of cycles to failure decreased and the fracture changed from mixed transgranular/intergranular to almost entirely intergranular. At 650° to 700°C, there was a marked tendency for grain boundaries to migrate and become aligned preferentially at 45 deg to the stress axis. The rate of migration was shown to be mainly dependent on the strain amplitude. Interrupted tests at 700°C showed that failure was due to nucleation, growth, and linkage of intergranular cavities. The onset of cavitation was delayed until grain boundaries had stabilized at 45 deg to the stress axis.


Fatigue Cavitation Stress Axis Strain Amplitude Triple Point 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Chen and E. S. Machlin:Acta Met, 1956, vol. 4, pp. 655–56.CrossRefGoogle Scholar
  2. 2.
    J. Intrater and E. S. Machlin:J. Inst. Metals, 1959, vol. 88, p. 305.Google Scholar
  3. 3.
    P. W. Davies and R. Dutton:Acta Met., 1966, vol. 14, p. 1138.CrossRefGoogle Scholar
  4. 4.
    D. Hull and D. E. Rimmer:Phil. Mag., 1959, vol. 4, pp. 673–88.CrossRefGoogle Scholar
  5. 5.
    M. V. Speight and J. E. Harris:Met. Sci. J., 1967, vol. 1, p. 83.CrossRefGoogle Scholar
  6. 6.
    R. P. Skelton:Phil. Mag., 1967, vol. 15, p. 407.CrossRefGoogle Scholar
  7. 7.
    R. T. Ratcliffe and G. W. Greenwood:Phil. Mag, 1959, vol. 13, p. 1915.Google Scholar
  8. 8.
    D. M. R. Taplin and L. J. Barker:Acta Met., 1966, vol. 14, p. 1527. G. J. Cocks and D. M. R. Taplin:Metallurgia, 1969, vol. 83, p. 230.CrossRefGoogle Scholar
  9. 9.
    R. A. T. Dawson, W. J. Elder, G. J. Hill, and A. T. Price:Thermal and High-Strain Fatigue, Monograph and Report Series No. 32, 1967, p. 239, London (Inst. Metals).Google Scholar
  10. 10.
    G. J. Hill:Thermal and High-Strain Fatigue, Monograph and Report Series No. 32, 1967, p. 312, London (Inst. Metals).Google Scholar
  11. 11.
    H. E.Evans and R. P. Skelton:Met. Sci. J., 1969, vol. 3, p. 152.CrossRefGoogle Scholar
  12. 12.
    G. Wigmore and G. C. Smith:Met. Sci. J., 1971, vol. 5, p. 58.CrossRefGoogle Scholar
  13. 13.
    K. U. Snowden:Phil. Mag., 1961, vol. 6, p. 321.CrossRefGoogle Scholar
  14. 14.
    S. Takenchi and T. Homma:Trans. Japan Inst. Met., 1966, vol. 7, p. 39.CrossRefGoogle Scholar
  15. 15.
    H. J. Westwood and D. M. R. Taplin: Department of Mechanical Engineering, University of Waterloo, Ontario, Canada; unpublished research, 1972.Google Scholar
  16. 16.
    D. L. Ritter and N. J. Grant:Thermal and High-Strain Fatigue, Monograph and Report Series No. 32,1967, p. 80, London (Inst. Metals).Google Scholar
  17. 17.
    JoDean Morrow and G. R. Halford:Creep Under Repeated Stress Reversals, Joint Int. Conf. on Creep, pp. 3–43 to 3–47, The Institute of Mechanical Engineers, London, 1963.Google Scholar
  18. 18.
    C. E. Jaske: T and AM Report No. 674, Department of Theoretical and applied Mechanics, University of Illinois, 1967.Google Scholar
  19. 19.
    A. N. Hughes: TRG Report 1018(6), United Kingdom Atomic Energy Authority, 1965.Google Scholar
  20. 20.
    M. Kitagawa: T and AM Report No. 319, Department of Theoretical and Applied Mechanics, University of Illinois, 1968.Google Scholar
  21. 21.
    L. F. Coffin: cited inMetals Mater, 1971, vol. 8, p. 246.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • H. J. Westwood
    • 1
  • D. M. R. Taplin
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations