Skip to main content
Log in

A theory of fatigue crack initiation at inclusions

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The dislocation dipole accumulation model for fatigue crack initiation previously proposed by the authors is extended to an analysis of the fatigue strength reduction due to inclusions in high strength alloys. The initiation of a fatigue crack is determined by an energy criterion under the assumption that the crack initiation takes place when the self strain energy of dislocation dipoles accumulated at the damaged part in the material reaches a critical value. Explicit formulae for the crack initiation criterion in several cases are derived as functions of the applied stress, the inclusion size, the slip band shape, and the shear moduli of the inclusion and matrix. The following three types of fatigue crack initiation at inclusions are considered: the slip-band crack emanating from a debonded inclusion, the inclusion cracking due to impinging of slip bands, and the slip-band crack emanating from an uncracked inclusion. The first mechanism was reported to be operative in high strength steels, while the last two mechanisms were reported in high strength aluminum alloys. The present theoretical results are in good agreement with the experimental data published for each case of fatigue crack initiation at inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. B. Stolen, H. N. Cummings, and W. C. Schulte:Proc. Int. Conf. Fatigue Metals, Inst. Mech. Eng., 1956, pp. 439–44.

    Google Scholar 

  2. H. N. Cummings, F. B. Stulen, and W. C. Schulte:ASTM, 1958, vol. 58, pp. 505–14.

    Google Scholar 

  3. S. Taira, K. Tanaka, and K. Watanabe:Trans. Japan Soci. Mech. Eng., 1972, vol. 38, pp. 3067–73.

    Google Scholar 

  4. J. Lankford and F. N. Kusenberger:Metall. Trans., 1973, vol. 4, pp. 553–59.

    Article  CAS  Google Scholar 

  5. J. Lankford:Int. J. Frac., 1976, vol. 12, pp. 155, 56.

    Google Scholar 

  6. J. Morrow: unpublished note, Univ. of Illinois.

  7. R. E. Peterson:Notch sensitivity: Metal fatigue, G. Sin and J. L. Waisman, eds., McGraw-Hill, New York, NY, 1959, pp. 293–306.

    Google Scholar 

  8. J. C. Grosskreutz and G. G. Shaw:Fracture, P. L. Pratt, ed., Chapman Hall, London, 1969, pp. 620–29.

    Google Scholar 

  9. W. L. Morris, O. Buck, and H. L. Marcus:Metall. Trans. A, 1976, vol. 7A, pp. 1161–65.

    CAS  Google Scholar 

  10. W. L. Morris:Metall. Trans. A, 1978, vol. 9A, pp. 1345–48.

    CAS  Google Scholar 

  11. W. L. Morris and M. R. James:Metall. Trans. A, 1980, vol. 11 A, pp. 850–51.

    Google Scholar 

  12. M. R. James and W. L. Morris: unpublished research, Rockwell International, 1980.

  13. R. Chang, W. L. Morris, and O. Buck:Scripta Met., 1979, vol. 13, pp. 191–94.

    Article  Google Scholar 

  14. Y. C. Kung and M. E. Fine:Metall. Trans. A, 1979, vol. 10A, pp. 603–10.

    CAS  Google Scholar 

  15. K. Tanaka and T. Mura:J. Appl. Mech., Trans. ASME, 1981, vol. 48, pp. 97–102.

    Article  Google Scholar 

  16. K. Tanaka and T. Mura:Mechanics of Materials, in press, (1981).

  17. J.D. Eshelby:Proc. Roy. Soc, 1957, vol. A241, pp. 376–96.

    Google Scholar 

  18. T. Mura and T. Mori: Applications of micromechanics: Micromechanics, Baifu-kan, Tokyo, 1975, pp. 149-70.

  19. J. D. Eshelby:Proc. Roy. Soc., 1959, vol. A252, pp. 561–69.

    Google Scholar 

  20. K. Tanaka and T. Mori:Acta Met., 1970, vol. 18, pp. 931–41.

    Article  CAS  Google Scholar 

  21. A. K. Head and N. Louat:Australian J. Phys., 1955, 8, pp. 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K., Mura, T. A theory of fatigue crack initiation at inclusions. Metall Trans A 13, 117–123 (1982). https://doi.org/10.1007/BF02642422

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642422

Keywords

Navigation