Skip to main content
Log in

Mode III fatigue crack propagation in low alloy steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

To provide a basis for estimating fatigue life in large rotating generator shafts subjected to transient oscillations, a study is made of fatigue crack propagation in Mode III (anti-plane shear) in torsionally-loaded spheroidized AISI4340 steel, and results compared to analogous behavior in Mode I. Torsional S/N curves, determined on smooth bars containing surface defects, showed results surprisingly close to expected unnotched Mode I data, with lifetime increasing from 104 cycles at nominal yield to 106 cycles at half yield. Fatigue crack growth rates in Mode III, measured on circumferentially-notched samples, were found to be slower than in Mode I, although still power-law related to the alternating stress intensity(△K III) for small-scale yielding. Mode III growth rates were only a small fraction (0.002 to 0.0005) of cyclic crack tip displacements(△CTD III) per cycle, in contrast to Mode I where the fraction was much larger (0.1 to 0.01). A micromechanical model for Mode III growth is proposed, where crack advance is considered to take place by a Mode II coalescence of cracks, initiated at inclusions ahead of the main crack front. This mechanism is consistent with the crack increment being a small fraction of △CTDIII per cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Abolins, D. Lambrecht, J. S. Joyce, and T.L. Rosenberg:IEEE Transactions for Power Apparatus and Systems, 1976, vol. 95, p. 14.

    Article  Google Scholar 

  2. U.C. Jackson, S.D. Umans, R.D. Dunlop, S.H. Horowitz, and A. C. Parikh:IEEE Transactions for Power Apparatus and Systems, 1979, vol. 98, p. 2299.

    Article  Google Scholar 

  3. R. D. Dunlop, S. H. Horowitz, A.C. Parikh, M. C. Jackson, and S.D. Umans:IEEE Transactions for Power Apparatus and Systems, 1979, vol. 98, p. 2308.

    Article  Google Scholar 

  4. M. C. Jackson: MIT EPSEL Report No. 55, August 1978, Electric Power Systems Engineering Laboratory, M.I.T., Cambridge, MA 02139.

    Google Scholar 

  5. D.N. Walker, C.E. Bowler, and R. L. Jackson: IEEE Transactions for Power Apparatus and Systems, 1975, vol. 94, p. 1878.

    Article  Google Scholar 

  6. W. W. Wilkening, F. A. McClintock, and R.O. Ritchie: Annual Report No. 1 to D.O.E., Division of Energy Conservation, M.I.T. Fatigue and Plasticity Laboratory Report No. FPL/R/79/1028, October 1979.

  7. R. O. Ritchie and F. A. McClintock: Annual Report No. 2 to D.O.E., Division of Energy Conservation, M.I.T. Fatigue and Plasticity Laboratory Report No. FPL/R/80/1037, October 1980.

  8. R. Placek, R. Williams, O. Klufas, and S. Actams: “Torsional Fatigue Strength of Large Turbine-Generator Shafts,” Report No. RP1531 to E.P.R.I., General Electric Company, Large Steam Turbine-Generator Division, Schenectady, NY 12345.

  9. H. E. Lokay, D. G. Ramey, and W. R. Brose:Proc. 40th American Power Conf., Illinois Institute of Technology, Chicago, IL, 1978, vol. 40, p. 1106.

    Google Scholar 

  10. M. E. Fine and R. O. Ritchie: inFatigue and Microstructure, American Society for Metals, Metals Park, OH, 1979, p. 245.

    Google Scholar 

  11. N. E. Dowling, W. R. Brose, and W. K. Wilson: inFatigue under Complex Loading: Analysis and Experiments, Society of Automotive Engineers, Warrendale, PA, 1971, vol. AE-6, p. 55.

    Google Scholar 

  12. J. A. H. Huit and F. A. McClintock:Proc. Ninth Intl. Congress on Applied Mechanics, University of Brussels, Belgium, 1957, vol. 8, p. 51.

    Google Scholar 

  13. J.B. Walsh and A.C. Mackenzie:J. Mech. Phys. Solids, 1959, vol. 7, p. 247.

    Article  Google Scholar 

  14. J. R. Rice:Intl. J. Fract. Mech., 1966, vol. 2, p. 426.

    CAS  Google Scholar 

  15. J. R. Rice: inFracture: An Advanced Treatise, H. Liebowitz, ed., Academic Press, New York, NY, 1968, vol. II, p. 248.

    Google Scholar 

  16. F. A. McClintock:Proc. Intl. Conf. Fatigue of Metals, London, U.K., Instit. Mech. Engineers, 1956, p. 538.

    Google Scholar 

  17. J. A. H. Hult:Trans. Royal Inst. of Tech., Stockholm, Sweden, No. 119, 1958.

  18. I. Kayan:Bull. Tech. Univ. Istanbul, 1961, vol. 14, p. 45.

    Google Scholar 

  19. F. A. McClintock: inFracture of Solids, TMS-AIME Conf. Ser. 20, Interscience, 1963, p. 65.

  20. M. Kage and H. Nisitani:Bulletin of JSME, 1978, vol. 21, p. 948.

    CAS  Google Scholar 

  21. L.P. Pook and J.K. Sharpies:Intl. J. Fracture, 1979, vol. 15, p. R223.

    Article  Google Scholar 

  22. L. P. Pook and A. F. Greenman: inFracture Mechanics, Amer. Soc. Test. Matl., Philadelphia, PA, ASTM STP, 1979, vol. 677, p. 23.

    Google Scholar 

  23. L. P. Pook:Proc. European Congress on Fracture III, J. C. Radon, ed., Pergamon Press, 1980, p. 143.

  24. N. J. Hurd and P. E. Irving: inDesign of Fatigue and Fracture -Resistant Structures, ASTM STP in press, American Society for Testing and Materials, Philadelphia, PA, 1981.

    Google Scholar 

  25. F. Hourlier, D. McLean, and A. Pineau:Metals Tech., 1978, vol. 5, p. 154.

    CAS  Google Scholar 

  26. R. O. Ritchie:J. Eng. Mater. Technol., Trans. ASME Ser. H., 1977, vol. 99, p. 195.

    CAS  Google Scholar 

  27. M. A. Ritter: “Fatigue Crack Propagation in Mode III,” S.M. Thesis, Dept. of Mech. Eng., M.I.T., Cambridge, MA 02139, December 1980.

    Google Scholar 

  28. R.O. Ritchie and K. J. Bathe:Intl. J. Fracture, 1979, vol. 15, p. 47.

    Article  Google Scholar 

  29. H. Tada, P. C. Paris, and G. R. Irwin: inThe Stress Analysis of Cracks Handbook, Del Research Corporation, Hellertown, PA, 1973, p. 27.1–3.

    Google Scholar 

  30. C. F. Shih:J. Mech. Phys. Solids, 1981, vol. 29, in press.

  31. F. W. Griese:Stahl u. Eisen, 1979, vol. 99, p. 193.

    Google Scholar 

  32. N.J. Hurd and P. E. Irving:Proc. European Congress on Fracture III, J. C. Radon, ed., Pergamon Press, 1980, p. 239.

  33. R. C. Shah: American Society for Testing and Materials, 1973, inASTM STP, 1973, vol. 560, p. 29.

  34. W.K. Wilson: Westinghouse Research Report 69-IE7-FMECH-R1, Westinghouse Research Laboratories, Pittsburgh, PA, June 1969.

    Google Scholar 

  35. L.P. Pook:Intl. J. Fracture, 1977, vol. 3, p. 205.

    Article  Google Scholar 

  36. F. A. McClintock and R. M. Pelloux: Boeing Technical Report No. Dl-82-0708, Boeing Company, Seattle, WA, 1968.

    Google Scholar 

  37. M. Kikukawa, M. Jono, and M. Adochi: American Society for Testing and Materials, inASTM STP, 1979, vol. 675, p. 243.

  38. V. A. Tipnis and N. H. Cook:J. Basic Eng., Trans. ASME Ser. D., 1967, vol. 89, p. 533.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with Massachusetts Institute of Technology, Cambridge, MA

Formerly with M.I. T.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.O., McClintock, F.A., Nayeb-Hashemi, H. et al. Mode III fatigue crack propagation in low alloy steel. Metall Trans A 13, 101–110 (1982). https://doi.org/10.1007/BF02642420

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642420

Keywords

Navigation