Skip to main content
Log in

Relaxation time effects in the stacking fault energy of noble metal alloys

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The stacking fault energy, γ, in noble metal alloys can be expressed as a sum of two terms: δufe, the contribution due to the conduction electrons; and δuc, the contribution due to thed electrons. For noble metals and alloys δuc 〉 δufe while for multivalent normal metals δufe 〉 δuc. The theory is first discussed in terms of recent calculations of the pseudopotential form factors of the noble metals (Moriarty) and some of the typical solutes (Shaw). The theory is then extended in a phenomenological fashion to include the effects of a finite relaxation time, τ, of the conduction electrons. It is shown that, for concentrated noble metal alloys with the electron-to-atom ratio,Z 〉 1.14 and multivalent normal metals, δufe and hence γ will be dependent on both temperature and deformation through their effects on τ. An increase in τ results in a decrease in the magnitude of δufe. In the case of concentrated noble metal alloys this results in an increase in γ with increasing t while for multivalent normal metals γ decreases with increasing τ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. C. Tisone, R. C. Sundahl, and G. Y. Chin:Met. Trans., 1970, vol. 1, p. 1571.

    Google Scholar 

  2. T. C. Tisone and R. C. Sundahl:Solid State Commun., 1970, vol. 8, p. 843.

    Article  Google Scholar 

  3. F. Ducastelle and F. Cyrot-Lackmann:J. Phys. Chem. Solids, 1970, vol. 31, p. 1295.

    Article  Google Scholar 

  4. F. Cyrot-Lackmann and F. Ducastelle:J. Phys. Chem. Solids, 1971, vol. 32 p. 285.

    Article  Google Scholar 

  5. J. A. Moriarty:Phys. Rev. B, 1970, vol. 1, p. 1363.

    Article  Google Scholar 

  6. R. W. Shaw, Jr.:Phys. Rev., 1968, vol. 174, p. 769.

    Article  Google Scholar 

  7. A. Blandin, J. Friedel, and G. Saada:J. Phys., 1966, vol. 27, p. C-128.

    Google Scholar 

  8. W. A. Harrison:Pseudopotentials in the Theory of Metals, p. 207, W. A. Benjamin, Inc., New York, 1966.

    Google Scholar 

  9. W. A. Harrison:Phys. Rev., 1969, vol. 181, p. 1036.

    Article  Google Scholar 

  10. E. E. Havinga, J. H. N. Van Vucht, and K. H. J. Buschow:Phillips Res. Rep., 1969, vol. 24, p. 407.

    Google Scholar 

  11. F. Cyrot-Lackmann, F. Ducastelle, and J. Friedel:Solid State Commun., 1970, vol. 8, p. 685.

    Article  Google Scholar 

  12. P. C. J. Gallagher and Y. C. Liu:Acta Met, 1969, vol. 17, p. 127.

    Article  Google Scholar 

  13. A. W. Howie and P. R. Swann:Phil. Mag., 1961, vol. 6, p. 1215.

    Article  Google Scholar 

  14. P. C. J. Gallagher and J. Washburn:Phil. Mag., 1966, vol. 14, p. 971.

    Article  Google Scholar 

  15. A. W. Ruffand L. K. Ives:Can. J. Phys., 1967, vol. 45, p. 787.

    Google Scholar 

  16. L. Delehouzee and A. Deruythere:.Acta Met., 1967, vol. 15, p. 727.

    Article  Google Scholar 

  17. N. H. March:Liquid Metals, p. 73, Pergamon Press, Oxford, 1968.

    Google Scholar 

  18. T. Gaskell and N. H. March:Phys. Lett., 1963, vol. 7, p. 169.

    Article  Google Scholar 

  19. P. G. deGennes:J. Phys. Radium, 1962, vol. 23, p. 630.

    Article  Google Scholar 

  20. W. A. Harrison:Solid State Theory, p. 300, McGraw-Hill, New York, 1970.

    Google Scholar 

  21. P. C. J. Gallagher and U. Valdre:Estratto da Atti del V Congresso Italiano di Microscopio Electronica, p. 1268, Seminario di Padova, UNESCO, 1965.

  22. P. C. J. Gallagher:Met. Trans., 1970, vol. 1, p. 2429.

    Google Scholar 

  23. Handbuch der Physik, S. Flugge, ed., vol. 29, Elektrische Leitungsphanomene I, Springer-Verlag, Berlin, p. 156, 1956.

    Google Scholar 

  24. W. Koster and H. P. Rave:Z. Metallk., 1963, vol. 54, p. 718.

    Google Scholar 

  25. Handbuch der Physik, S. Flugge, ed., vol. 29, Elektrische Leitungsphanomene I, Springer-Verlag, Berlin, p. 210, 1956.

    Google Scholar 

  26. W. B. Pearson:Handbook of Lattice Spacings and Structures of Metals and Alloys, p. 263, Pergamon Press, London, 1958.

    Google Scholar 

  27. T. C. Tisone, J. O. Brittain, and M. Meshii:Phys. Status Solidi, 1968, vol. 27, p. 185.

    Article  Google Scholar 

  28. L. K. Ives and A. W. Ruff:Phys. Status Solidi, 1968, vol. 27, p. 117.

    Article  Google Scholar 

  29. J. W. Christain and P. R. Swann:Alloying Behavior and Effects in Concentrated Solid Solution, T. B. Massalski, ed., p. 105, Gordon and Breach, N. Y., 1965.

    Google Scholar 

  30. J. B. Cohen and M. Fine:J Phys. Radium, 1962, vol. 23, p. 749.

    Article  Google Scholar 

  31. S. Matsuo and L. M. Clarebough:Acta Met., 1963, vol. 11, p. 1195.

    Article  Google Scholar 

  32. A. W. Ruff and L. K. Ives:Nat. Bur. Stand., Washington, D. C, unpublished research, 1970.

  33. B. Pettersson:Phi!. Mag., 1970, vol. 21, p. 831.

    Google Scholar 

  34. L. O. Salonen, J. P. Kajamoa, and A. V. A. Saariene:Z. Metallk., 1969, vol. 60, p. 802.

    Google Scholar 

  35. R. Vasudevan:J Appl. Cryst., 1970, vol. 3, p. 211.

    Article  Google Scholar 

  36. L. Wallden:Phil. Mag., 1970, vol. 21, p. 571.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tisone, T.C. Relaxation time effects in the stacking fault energy of noble metal alloys. Metall Trans 3, 431–439 (1972). https://doi.org/10.1007/BF02642047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642047

Keywords

Navigation