Skip to main content
Log in

Cellular microstructure and plasticity of lead at high temperature

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

These experiments were designed to test some aspects of a recent theory of plastic flow in strain hardened metals, in which thedistribution of dislocations in the hardened micro-structure is a principal variable. In particular, the theory predicts that this distribution determines the shape of the initial portion of the high strain rate stress-strain curve (ideally, the time-independent curve). Abrupt yielding is associated with aregular distribution of dislocations and gradual yielding with anonregular distribution. Thus, from measurement of this curve at any instant, say during high temperature creep deformation, a distribution parametert v and a dislocation density parameter Ty can be determined. The strain measurements were made on a recording oscilloscope following the application of small, high-rate stress pulses to lead samples suffering creep at various high temperatures. Analysis of the results indicates that Tv/Ty increases strongly with increasing creep temperature. That is, the structure is less regular at high temperature or equiva-lently, as a preliminary structural study suggests, more cellular. In turn, this increasing cellularity may correlate with the increasing temperature and strain rate sensitivity of the flow stress at high temperature, previously measured. The theory predicts this correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Cottrell and V. Aytekin:J. Inst. Metals, 1950, vol. 77, p. 389.

    CAS  Google Scholar 

  2. A. Seeger: inDislocations and Mechanical Properties of Crystals, J. Fisher et al., p. 243, Wiley, New York, 1957.

    Google Scholar 

  3. C. N. Ahlquist, R. Gasca-Neri and W. D. Nix:Acta Met, 1970, vol. 18, p. 663.

    Article  Google Scholar 

  4. T. H. Alden:Phil. Mag., 1972, vol. 25, p. 785.

    Article  ADS  Google Scholar 

  5. P. B. Hirsch and D. H. Warrington:Phil. Mag., 1961, vol. 6, p. 735.

    Article  CAS  ADS  Google Scholar 

  6. U. F. Kocks:Phil. Mag, 1966, vol. 13, p. 541.

    Article  ADS  Google Scholar 

  7. T. H. Alden:Met. Trans., 1973, vol. 4, p. 1047.

    Article  CAS  Google Scholar 

  8. M. A. Clark and T. H. Alden: inJohn Dorn Memorial Symposium, Metals Park, A.S.M., 1975.

  9. P. C. J. Gallagher:Phil. Mag, 1967, vol. 15,p. 51.

    Article  CAS  ADS  Google Scholar 

  10. F. Weinberg:Trans. TMS-AIME, 1968, vol. 242, p. 2111.

    CAS  Google Scholar 

  11. U. F. Kocks: inPhysics of Strength and Plasticity, Argon, ed., p. 143, M.l.T. Pres, Cambridge, 1969.

    Google Scholar 

  12. V. P. Gupta and P. B. Strutt:Can. J. Phys., 1967, vol. 45, p. 1213.

    CAS  Google Scholar 

  13. F. Garofalo:Fundamentals of Creep and Creep Rupture in Metals, MacMillan, New York, 1965.

    Google Scholar 

  14. F. R. N. Nabarro, Z.S. Basinski and D.B. HoltHolt: Advan.Phys., 1964, vol. 13,p. 193.

    Article  CAS  ADS  Google Scholar 

  15. P. R. Swann: inElectron Microscopy and the Strength of Crystals, p. 131, Interscience, New York, 1963.

    Google Scholar 

  16. A. S. Keh and S. Weissmann:Electron Microscopy and the Strength of Crystals, p. 231, Interscience, New York, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alden, T.H. Cellular microstructure and plasticity of lead at high temperature. Metall Trans A 6, 1597 (1975). https://doi.org/10.1007/BF02641973

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02641973

Keywords

Navigation