Skip to main content
Log in

Influence of heat treatment on the fatigue crack growth rates of a secondary hardening steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The relationships between microstructure and fatigue crack propagation behavior were studied in a 5Mo-0.3C steel. Microstructural differences were achieved by varying the tempering treatment. The amounts, distribution, and types of carbides present were influenced by the tempering temperature. Optical metallography and transmission electron microscopy were used to characterize the microstructures. Fatigue fracture surfaces were studied by scanning electron microscopy. For each heat treatment the fatigue crack growth properties were measured under plane strain conditions using a compact tension fracture toughness specimen. The properties were reported using the empirical relation of Paris [da/dN = CoΔKm]. It was found that secondary hardening did influence the fatigue crack growth rates. In particular, intergranular modes of fracture during fatigue led to exaggerated fatigue crack growth rates for the tempering treatment producing peak hardness. Limited testing in a dry argon atmosphere showed that the sensitivity of fatigue crack growth rates to environment changed with heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Paris and F. Erdogan:Trans. ASME, 1963, vol. 85, pp. 528–34.

    CAS  Google Scholar 

  2. H. H. Johnson and P. C. Paris:Eng. Fract. Mech., 1968, vol. 1, pp. 3–45.

    Article  Google Scholar 

  3. G. R. Chanani, S. D. Antolovich, and W. W. Gerberich:Met. Trans., 1972, vol. 3, pp. 2661–72.

    Article  CAS  Google Scholar 

  4. W. G. Clark, Jr.:Eng. Fract. Mech., 1968, vol. 1, pp. 385–98.

    Article  CAS  Google Scholar 

  5. N. E. Frost, L. P. Pook, and K. Denton:Eng. Fract. Mech., 1971, vol. 3, pp. 109–26.

    Article  CAS  Google Scholar 

  6. C. E. Richards and T. C. Lindley:Eng. Fract. Mech., 1972, vol. 4, pp. 951–78.

    Article  CAS  Google Scholar 

  7. P. R. Evans, N. B. Owens, and B. E. Hopkins:Eng. Fract. Mech., 1971, vol. 3, pp. 463–73.

    Article  CAS  Google Scholar 

  8. R. P. Wei, P. M. Talda, and C. Li:Fatigue Crack Propagation, ASTM, STP 415, pp. 460–80, ASTM, Philadelphia, Pa., 1967.

    Google Scholar 

  9. F. A. Hieser and W. Mortimer:Met. Trans., 1972, vol. 3, pp. 2119–23.

    Article  Google Scholar 

  10. G. A. Miller:Trans. ASM, 1968, vol. 61, pp. 442–48.

    CAS  Google Scholar 

  11. A. A. Anctil and E. B. Kula:Effects of Environment and Complex Load History and Fatigue Life, ASTM, STP 462, pp. 297–317, ASTM, Philadelphia, Pa., 1970.

    Book  Google Scholar 

  12. R. D. Goolsby: Ph.D. Thesis, University of California, Bekeley, LBL-405, Nov. 1971.

    Google Scholar 

  13. 1973 Annual Book of ASTM Standards, part 31, p. 960, ASTM, Pa., 1973.

  14. J. Mandel:The Statistical Analysis of Experimental Data, pp. 247–50, Wiley-Interscience, New York, 1964.

    Google Scholar 

  15. P. M. Kelly and J. Nutting:J.Iron Steel Inst., 1961,vol. 197,pp. 199–211.

    Google Scholar 

  16. J. F. Throop and G. A. Miller:Achievement of High Fatigue Resistance in Metals and Alloys, ASTM STP 467, pp. 154–68, ASTM, Philadelphia, Pa., 1970.

    Book  Google Scholar 

  17. C. D. Beachem and R. M. N. Pelloux:Fracture Toughness Testing and Its Applications, ASTM STP 381, pp. 210–45, ASTM, Philadelphia, Pa., 1965.

    Book  Google Scholar 

  18. E. B. Kula and A. A. Anctil:J. Mater., 1969, vol. 4, pp. 817–41.

    Article  CAS  Google Scholar 

  19. T. B. Cox and J. R. Low, Jr.:Met. Trans., 1974, vol. 5, pp. 1457–70.

    Article  CAS  Google Scholar 

  20. B. S. Lenient, B. L. Averbach, and M. Cohen:Trans. Amer. Soc. Metals, 1954, vol. 46, pp. 851–81.

    Google Scholar 

  21. Y. H. Liu:Trans. Amer. Soc. Metals, 1969, vol. 62, pp. 55–63.

    CAS  Google Scholar 

  22. C. Laird:Fatigue Crack Propagation, ASTM, STP 415, pp. 131–80, ASTM, Philadelphia, Pa., 1967.

    Google Scholar 

  23. R. M. N. Pelloux:Trans. Amer. Soc. Metals, 1964, vol. 57, p. 511–18.

    CAS  Google Scholar 

  24. L. H. Classman and A. J. McEvily, Jr.: NASA TN D-928, 1962.

  25. R. O. Ritchie and J. F. Knott:Acta Met, 1973, vol. 21, pp. 639–48.

    Article  CAS  Google Scholar 

  26. D. Raynor, J. A. Whiteman, and R. W. K. Honeycombe:J. Iron Steel Inst., 1966, vol. 204, pp. 349–54.

    CAS  Google Scholar 

  27. J. R. Low, Jr.:Trans. TMS-AIME, 1969, vol. 245, pp. 2481–94.

    CAS  Google Scholar 

  28. J. Plateau, G. Henry, and C. Crussard:Rev. Met., 1957, vol. 54, pp. 200–16.

    CAS  Google Scholar 

  29. E. P. Dahlberg:Trans. Amer. Soc. Metals, 1965, vol. 58, pp. 46–53.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, R.M. Influence of heat treatment on the fatigue crack growth rates of a secondary hardening steel. Metall Trans A 6, 1525 (1975). https://doi.org/10.1007/BF02641963

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF02641963

Keywords

Navigation