Skip to main content

The effect of micellar lifetime on the rate of solubilization and detergency in sodium dodecyl sulfate solutions

Abstract

The slow relaxation time (τ2) of sodium dodecyl sulfate (SDS) micelles, measured by the pressure-jump technique, was maximum at 200 mM concentration at 25°C, indicating that the most stable micelles are formed at this concentration. This is presumably related to the optimum molecular packing in the micelle. The rate of solubilization of benzene and Orange OT dye into SDS solutions was also maximum at 200 mM concentration. The results are explained as follows: The distance between micelles (i.e., intermicellar distance) decreases as the surfactant concentration (or the number of micelles) increases, resulting in a stronger electric repulsion between micelles. Therefore, the micelles become more rigid, due to the compressive force of intermicellar repulsion, as the concentration increases up to 200 mM SDS. With further increase in the SDS concentration, the micellar shape changes from spherical to cylindrical to accommodate more surfactant molecules in the solution and to minimize the free energy of the system. The interior of the tightly packed micelles is more hydrophobic than that of loosely packed micelles and, therefore, the tightly packed micelles induce rapid solubilization of nonpolar molecules (e.g., benzene, Orange OT) into these micelles.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Fendler, J.H., and E.J. Fendler,Catalysis in Micellar and Macromolecular Systems, Academic Press, Inc., 1975, Chapter 3.

  2. 2.

    Rosen, M.J.,Surfactants and Interfacial Phenomena, 2nd edn., John Wiley & Sons Inc., New York, 1989.

    Google Scholar 

  3. 3.

    Florence, A.T., I.G. Tucker and K.A. Walters,Structure/Performance Relationships in Surfactants, edited by M.J. Rosen, ACS Symposium Series 253, American Chemical Society, Washington, D.C., 1984, p. 189.

    Google Scholar 

  4. 4.

    Attwood, D., and A.T. Florence,Surfactant Systems: Their Chemistry, Pharmacy and Biology, Chapman and Hall, New York, 1984.

    Google Scholar 

  5. 5.

    Philippoff, W.,J. Colloid Interf. Sci. 5:169 (1950).

    Article  CAS  Google Scholar 

  6. 6.

    Mukerjee, P., and J.R. Cardinal,J. Phys. Chem. 82:1620 (1978).

    Article  CAS  Google Scholar 

  7. 7.

    Eriksson, J.C., and G. Gillberg,Acta. Chem. Scand. 20:2019 (1966).

    CAS  Article  Google Scholar 

  8. 8.

    Tokiwa, F.,J. Phys. Chem. 72:1214 (1968).

    Article  CAS  Google Scholar 

  9. 9.

    Collett, J.H., R. Withington and L. Koo,J. Pharm. Pharmac. 27:46 (1975).

    CAS  Google Scholar 

  10. 10.

    Klevens, H.B.,Chem. Rev. 47:1 (1950).

    Article  CAS  Google Scholar 

  11. 11.

    Bates, T.R., M. Gibaldi and J.L. Kanig,J. Pharm. Sci. 55:191 (1966).

    Article  CAS  Google Scholar 

  12. 12.

    Stearns, R.S., H. Oppenheimer, E. Simon and W.D. Harkins,J. Chem. Phys. 15:496 (1947).

    Article  CAS  Google Scholar 

  13. 13.

    Nakagawa, T., and K. Tori,Kolloid-Z u. Z.-Polymere 194:143 (1964).

    Article  CAS  Google Scholar 

  14. 14.

    Nakagawa, T., and H. Jizomoto, Ibid.:594 (1972).

    Article  CAS  Google Scholar 

  15. 15.

    Nakagawa, T., and H. Jizomoto,Colloid Polymer Sci. 252:482 (1974).

    Article  CAS  Google Scholar 

  16. 16.

    James, A.D., B.H. Robinson and N.C. White,J. Colloid Interf. Sci. 59:328 (1977).

    Article  CAS  Google Scholar 

  17. 17.

    Tondre, C., J. Lang and R. Zana, Ibid.:372 (1975).

    Article  CAS  Google Scholar 

  18. 18.

    Hoffman, H., R. Nagel, G. Platz and W. Ulbricht,Colloid Polymer Sci. 254:812 (1976).

    Article  Google Scholar 

  19. 19.

    Adair, D.A., V.C. Reinsborough, N. Plavac and J.P. Valleau,Can. J. Chem. 54:1162 (1976).

    Article  CAS  Google Scholar 

  20. 20.

    Aniansson, E.A.G., and S.N. Wall,J. Phys. Chem. 78:1024 (1974).

    Article  CAS  Google Scholar 

  21. 21.

    Leung, R., and D.O. Shah,J. Colloid Interf. Sci. 113:484 (1986).

    Article  CAS  Google Scholar 

  22. 22.

    Muller, N.,Solution Chemistry of Surfactant, edited by K.L. Mittal, Plenum Press, New York and London, 1979, Vol. 1.

    Google Scholar 

  23. 23.

    Gettings, W.J., J.E. Rassing and Wyn-Jones,Micellization, Solubilization and Microemulsion, edited by K.L. Mittal, Plenum Press, New York, 1977, Vol. 1.

    Google Scholar 

  24. 24.

    Oh, S.G., and D.O. Shah,Langmuir 7:1316 (1991).

    Article  CAS  Google Scholar 

  25. 25.

    Lessner, E., and J. Frahm,J. Phys. Chem. 86:3032 (1981).

    Article  Google Scholar 

  26. 26.

    Kahlweit, M.,J. Colloid Interf. Sci. 90:92 (1982).

    Article  CAS  Google Scholar 

  27. 27.

    Inoue, T., Y. Shibuya and R. Shimozawa, Ibid.:370 (1978).

    Article  CAS  Google Scholar 

  28. 28.

    Chan, K.S., Ph.D. thesis, The Molecular Mechanism of Achieving Ultra-Low Interfacial Tension in Surfactant-Oil-Brine-System, University of Florida, 1978.

  29. 29.

    Chan, A.F., D.F. Evans and E.L. Cussler,Am. Ind. Chem. Eng. 22:1006 (1976).

    CAS  Google Scholar 

  30. 30.

    Lianos, P., and R. Zana,J. Colloid Interf. Sci. 84:100 (1981).

    Article  CAS  Google Scholar 

  31. 31.

    Hayter, J.B., and J. Penfold,J. Chem. Soc., Faraday Trans. I 77:1851 (1981).

    Article  CAS  Google Scholar 

  32. 32.

    Ekwall, P., inChemistry, Physics and Application of Surface Active Substance, edited by J.Th.G. Overbeek, Gordon and Breach Science Publisher, New York, 1967.

    Google Scholar 

  33. 33.

    Reiss-Husson, F., and V. Luzzati,J. Phys. Chem. 68:3504 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. O. Shah.

About this article

Cite this article

Oh, S.G., Shah, D.O. The effect of micellar lifetime on the rate of solubilization and detergency in sodium dodecyl sulfate solutions. J Am Oil Chem Soc 70, 673–678 (1993). https://doi.org/10.1007/BF02641002

Download citation

Key words

  • Detergency
  • electrical conductivity
  • intermicellar distance
  • micellar lifetime
  • pressure-jump technique
  • rate of solubilization
  • rigidity of micelles