, Volume 42, Issue 1, pp 67–73 | Cite as

Wild gibbons' parentage tested by non-invasive DNA sampling and PCR-amplified polymorphic microsatellites

  • Teruki Oka
  • Osamu Takenaka


Elucidating the genetic relationships among members of a social group is indispensable in studying any social system of primates.Hylobates spp. are believed to be monogamous, although some long-term monitoring studies have provided conflicting evidence. We applied a parentage testing technique to a group ofHylobates muelleri in the wild. Forty-five microsatellite loci were screened in the 12 unrelated gibbons' DNA, and 16 of the 45 loci were found to be polymorphic. Hair and fecal samples from 15 gibbons in the field were collected non-invasively. In each sample, the 16 polymorphic loci were amplified by PCR using appropriate primer pairs and separated by electrophoresis. We estimated three pairs of parents-offspring, a pair each of both father-offspring, and mother-offspring genetic relationships. Further, in two of the five cases, we revealed the family a subadult lived with was not a natal one of the subadult. The non-invasive sampling methods and polymorphic primer pairs used in this study would greatly enhance the understanding of gibbon's society in the wild.

Key words

Hylobates muelleri DNA polymorphism Non-invasive sampling Parentage test Feces Microsatellite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boom, R.;Sol, C. J. A.;Salimans, M. M. M.;Jansen, C. L.;Weltheim van Dillen, P. M. E.;van der Noordaa, J. 1990. Rapid and simple method for purification of nucleic acids.J. Clin. Microbiol., 28: 495–503.PubMedGoogle Scholar
  2. Brockelman, W. Y.;Reichard, U.;Treesucon, U.;Raemaekers, J. J. 1998. Dispersal, pair formation and social structure in gibbons (Hylobates lar).Behav. Ecol. Sociobiol., 42: 329–339.CrossRefGoogle Scholar
  3. Brockelman, W. Y.;Srikosamatara, S. 1984. Maintenance and evolution of social structure in gibbons. In:The Lesser Apes: Evolutionary and Behavioural Biology,Preuschoft,H.;Chivers,D. J.;Brockelman,W. Y.;Creel,N. (eds.), Edinburgh Univ. Press, Edinburgh, pp. 298–323.Google Scholar
  4. Carpenter, C. R. 1940. A field study in Siam of the behavior and social relations of the gibbonHylobates lar.Comp. Psychol. Monogr., 16: 1–212.Google Scholar
  5. Constable, J. J.;Packer, C.;Collins, D. A.;Pusey, A. E. 1995. Nuclear DNA from primate dung.Nature, 373: 393.PubMedCrossRefGoogle Scholar
  6. Domingo-Roura, X.;López-Giráldez, T.;Shinohara, M.;Takenaka, O. 1997. Hypervariable microsatellite loci in the Japanese macaque (Macaca fuscata) conserved in related species.Amer. J. Primatol., 43: 357–360.CrossRefGoogle Scholar
  7. Hayakawa, S.;Takenaka, O. 1999. Urine as another potential source for template DNA in polymerase chain reaction (PCR).Amer. J. Primatol., 48: 299–304.CrossRefGoogle Scholar
  8. Inoue, M.;Takenaka, O. 1993. Japanese macaque microsatellite PCR primers for paternity testing.Primates, 34: 37–45.CrossRefGoogle Scholar
  9. Kreader, C. A. 1996. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein.Appl. Environ. Microbiol., 62: 1102–1106.PubMedGoogle Scholar
  10. Mullis, K. B.;Faloona, F. A. 1987. Specific synthesis of DNAin vitro via a polymerase-catalysed chain reaction. In:Methods in Enzymology, Vol. 155,Wu,R. (ed.), Academic Press, New York, pp. 335–350.Google Scholar
  11. Nievergelt, C. M.;Mundy, N. I.;Woodruff, D. S. 1998. Microsatellite primers for genotyping common marmosets (Callithrix jacchus) and other callitrichids.Mol. Ecol., 7: 1341–1349.Google Scholar
  12. Oka, T.;Iskandar, E.;Ghozali, D. I. 2000. Effects of forest fragmentation on the behavior of Bornean gibbons. In:Rainforest Ecosystems of East Kalimantan: El Niño, Drought, Fire and Human Impacts.Guhardja, E.;Fatawi, M.;Sutisna, M.;Mori, T.;Ohta, S. (eds.), Ecological Studies 140, Springer-Verlag, Tokyo, pp. 229–241.Google Scholar
  13. Palombit, R. 1994. Dynamic pair bonds in Hylobatids: implications regarding monogamous social systems.Behaviour, 128: 65–101.Google Scholar
  14. Reichard, U. 1995. Extra-pair copulations in a monogamous gibbon (Hylobates lar).Ethology, 100: 99–112.CrossRefGoogle Scholar
  15. Saiki, R. K.;Scharf, S.;Faloona, F.;Mullis, K. B.;Horn, G. T.;Erlich, H. A.;Arnheim, N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.Science, 230: 1350–1354.PubMedCrossRefGoogle Scholar
  16. Taberlet, P.;Waits, L. P. 1998. Non-invasive genetic sampling.Trends Ecol. Evol., 13: 26–27.CrossRefGoogle Scholar
  17. Takasaki, H.;Takenaka, O. 1991. Paternity testing in chimpanzees with DNA amplification from hairs and buccal cells in wadges: a preliminary note. In:Primatology Today,Ehara,A.;Kimura,T.;Takenaka,O.;Iwamoto,M. (eds.), Elsevier, Amsterdam, pp. 612–616.Google Scholar
  18. Takenaka, O.;Takasaki, H.;Kawamoto, S.;Arakawa, M.;Takenaka, A. 1993. Polymorphic microsatellite DNA amplification customized for chimpanzee paternity testing.Primates, 34: 27–35.CrossRefGoogle Scholar
  19. Tegelström, H. 1986. Mitochondrial DNA in natural populations: an improved routine for the screening of genetic variation based on sensitive silver staining.Electrophoresis, 7: 226–229.CrossRefGoogle Scholar
  20. Tilson, R. I. 1981. Family formation strategies of Kloss's gibbons.Folia Primatol., 35: 259–281.PubMedCrossRefGoogle Scholar
  21. Woodruff, D. S. 1993. Non-invasive genotyping of primates.Primates, 34: 333–346.CrossRefGoogle Scholar

Copyright information

© Japan Monkey Centre 2001

Authors and Affiliations

  • Teruki Oka
    • 1
  • Osamu Takenaka
    • 1
  1. 1.Primate Research InstituteKyoto UniversityInuyama, AichiJapan

Personalised recommendations