Skip to main content
Log in

Acquisition of in vitro growth autonomy during B16 melanoma malignant progression is associated with autocrine stimulation by transferrin and fibronectin

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Four mouse B16 melanoma subclones representing distinct stages in the benign-to-malignant progression of that tumor (G3.15, G3.5, G3.12, and G3.26), and three phenotype conversion variants with enhanced malignancy (G3.15*, G3.5*, and G3.12*), were comparatively examined for exogenous mitogen and growth factor requirements and for responsiveness to exogenous and endogenous growth modulators in monolayer culture. Growth behavior in serum-free medium with or without mitogen or growth factor supplements, and in supplemented quiescent serum-containing medium, confirmed previous indications that the G3.5 and G3.15* phenotypes were identical, as were the G3.26 and G3.12* phenotypes. However, G3.12 differed from the closest conversion equivalent, G3.5*, and probably represents an aberrant phenotype within this sequence. There was a direct relationship between degree of malignancy (G3.15 → G3.5 → G3.5* → G3.26), growth capacity in serum-free medium, and responsiveness to transferrin. Only G3.5*, G3.26, and G3.12* cells were growth-autonomous in serum-free medium and also highly responsive to mitogens. The polypeptide growth factors epidermal growth factor, platelet-derived growth factor, basic fibroblast growth factor, transforming growth factor-α, and insulinlike growth factor-1 and -2 were generally stimulatory in quiescent medium, but the degree of growth promotion was unrelated to malignancy level. Transforming growth factor-β1 was inhibitory to the more benign populations (G3.15, G3.5, and G3.15*) but stimulated proliferation of other cells. All populations produced autocrine fibronectin, and G3.12, G3.5*, G3.26, and G3.12* cells also produced autocrine transferrin. Only G3.12 cells failed to utilize both of those factors. Reversible mitogen-stimulated G3.12 cell growth was accompanied by partial and reversible responsiveness to both autocrine transferrin and fibronectin, whereas permanent stimulation by both factors characterized all growth-autonomous populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaronson, S. A. Growth factors and cancer. Science 254:1146–1153; 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Alterman, A. L.; Fornabaio, D. M.; Kim, Y. S., et al. The role of intratumor environment in determining spontaneous metastatic activity of a B16 melanoma clone. Invasion Metastasis 9:242–253; 1989.

    PubMed  CAS  Google Scholar 

  3. Band, V.; Zajchowski, D.; Swisshelm, K., et al. Tumor progression in four mammary epithelial cell lines derived from the same patient. Cancer Res. 50:7351–7357; 1990.

    PubMed  CAS  Google Scholar 

  4. Barnes, D.; Sato, G. Methods for growth of cultured cells in serum-free medium. Analt. Biochem. 102:255–270; 1980.

    Article  CAS  Google Scholar 

  5. Bayer, E. A.; Wilchek, M. One-step immunoaffinity purification of transferrin. Methods Enzymol. 184:301–303; 1990.

    PubMed  CAS  Google Scholar 

  6. Blake, M. S.; Johnston, K. H.; Russell-Jones, G. J., et al. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Analt. Biochem. 136:175–179; 1984.

    Article  CAS  Google Scholar 

  7. Blanckaert, V. D.; Schelling, M. E.; Cardeiro, D. J., et al. Differential growth factor production and response by high and low metastatic variants of B16BL6 melanoma. Proc. Am. Assoc. Cancer Res. 33:66; 1992.

    Google Scholar 

  8. Chadwick, D. E.; Lagarde, A. E. Coincidental acquisition of growth autonomy and metastatic potential during the malignant transformation of factor-dependent CCL39 lung fibroblasts. J. Natl. Cancer Inst. 80:318–325; 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Cowan, J. M.; Franke, U. Cytogenetic analysis in melanoma and nevi. In: Nathanson, L., ed. Melanoma research: genetics, growth factors, metastases, and antigens. Boston: Kluwer Academic Publishers; 1991:3–16.

    Google Scholar 

  10. Dittmann, K. H.; Petrides, P. E. A 41 kDa transferrin related molecule acts as an autocrine growth factor for HL-60 cells. Biochem. Biophys. Res. Commun. 176:473–478; 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Elder, D. E.; Rodeck, U.; Thurin, J., et al. Antigenic profile of tumor progression stages in human melanocytic nevi and melanomas. Cancer Res. 49:5091–5096; 1989.

    PubMed  CAS  Google Scholar 

  12. Ershler, W. B.; Berman, E.; Moore, A. L. Slower B16 melanoma growth but greater pulmonary colonization in calorie-restricted mice. J. Natl. Cancer Inst. 76:81–85; 1986.

    PubMed  CAS  Google Scholar 

  13. Fearon, E. R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61:759–767; 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Foulds, L. Tumor progression. Cancer Res. 17:355–356; 1957.

    PubMed  CAS  Google Scholar 

  15. Foulds, L. Neoplastic development. Vol. 2. New York: Academic Press; 1975.

    Google Scholar 

  16. Goyette, M. C.; Cho, K.; Fasching, C. L., et al. Progression of colorectal cancer is associated with multiple tumor suppressor gene defects but inhibition of tumorigenicity is accomplished by correction of any single defect via chromosome transfer. Mol. Cell. Biol. 12:1387–1395; 1992.

    PubMed  CAS  Google Scholar 

  17. Hansen, M. B.; Nielsen, S. E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 119:203–210; 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Herlyn, M.; Thurin, J.; Balaban, G., et al. Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res. 45:5670–5676; 1985.

    PubMed  CAS  Google Scholar 

  19. Inoue, T.; Cavanaugh, P. G.; Steck, P. A., et al. Differences in transferrin response and numbers of transferrin receptors in rat and human mammary carcinoma lines of different metastatic potentials. J. Cell. Physiol. 156:212–217; 1993.

    Article  PubMed  CAS  Google Scholar 

  20. Kerbel, R. S. Expression of multi-cytokine resistance and multi-growth factor independence in advanced stage metastatic cancer: malignant melanoma as a paradigm. Am. J. Pathol. 141:519–524; 1992.

    PubMed  CAS  Google Scholar 

  21. Mather, J. P.; Sato, G. H. The growth of mouse melanoma cells in hormone-supplemented, serum-free medium. Exp. Cell Res. 120:191–200; 1979.

    Article  PubMed  CAS  Google Scholar 

  22. Mooradian, D. L.; Purchio, A. F.; Furcht, L. T. Differential effects of transforming growth factorβ1 on the growth of poorly and highly metastatic murine melanoma cells. Cancer Res. 50:273–277; 1990.

    PubMed  CAS  Google Scholar 

  23. Nicolson, G. L.; Inoue, T.; Van Pelt, C. S., et al. Differential expression of a Mr ∼90,000 cell surface transferrin receptor-related glycoprotein on murine B16 metastatic melanoma sublines selected for enhanced brain or ovary colonization. Cancer Res. 50:515–520; 1990.

    PubMed  CAS  Google Scholar 

  24. Rodeck, U.; Herlyn, M.; Menssen, H. D., et al. Metastatic but not primary melanoma cells growin vitro independently from exogenous growth factors. Int. J. Cancer 40:687–690; 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Ruoslahti, E.; Hayman, E. G.; Pierschbacher, M., et al. Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol. 82:803–831; 1982.

    PubMed  CAS  Google Scholar 

  26. Schwarz, L. C.; Gingras, M.-G.; Goldberg, G., et al. Loss of growth factor dependence and conversion of transforming growth factor-β1 inhibition to stimulation in metastatic H-ras transformed murine fibroblasts. Cancer Res. 48:6999–7003; 1988.

    PubMed  CAS  Google Scholar 

  27. Shapiro, L. E.; Wagner, N. Transferrin as an autocrine growth factor secreted by Reuber H-35 cells in serum-free culture. In Vitro Cell. Dev. Biol. 25:650–654; 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Sidransky, D; Mikkelsen, T.; Schwechheimer, K., et al. Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355:846–847; 1992.

    Article  PubMed  CAS  Google Scholar 

  29. Stackpole, C. W. Generation of phenotypic diversity in the B16 mouse melanoma relative to spontaneous metastasis. Cancer Res. 43:3057–3065; 1983.

    PubMed  CAS  Google Scholar 

  30. Stackpole, C. W.; Alterman, A. L.; Fornabaio, D. M. Growth characteristics of clonal cell populations constituting a B16 melanoma metastasis model system. Invasion Metastasis 5:125–143; 1985.

    PubMed  CAS  Google Scholar 

  31. Stackpole, C. W.; Fornabaio, D. M.; Alterman, A. L. Phenotypic interconversion of B16 melanoma clonal cell populations: relationship between metastasis and tumor growth rate. Int. J. Cancer 35:667–674; 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Stackpole, C. W.; Groszek, L.; Kalbag, S. S. Benign-to-malignant B16 melanoma progression induced in two stagesin vitro by exposure to hypoxia. J. Natl. Cancer Inst. 86:361–367; 1994.

    Article  PubMed  CAS  Google Scholar 

  33. Valle, E. F.; Zalka, A. D.; Groszek, L., et al. Patterning of B16 melanoma metastasis and colonization generally relates to tumor cell growth-stimulating or growth-inhibiting effects of organs and tissues. Clin. Exp. Metastasis 10:419–429; 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Vostrejs, M.; Moran, P. L.; Seligman, P. A. Transferrin synthesis by small cell lung cancer cells acts as an autocrine regulator of cellular proliferation. J. Clin. Invest. 82:331–339; 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stackpole, C.W., Kalbag, S.S. & Groszek, L. Acquisition of in vitro growth autonomy during B16 melanoma malignant progression is associated with autocrine stimulation by transferrin and fibronectin. In Vitro Cell Dev Biol - Animal 31, 244–251 (1995). https://doi.org/10.1007/BF02639440

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02639440

Key words

Navigation