Skip to main content
Log in

Characterization of a new human glioblastoma cell line that expresses mutant P53 and lacks activation of the PDGF pathway

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We have established and characterized a new glioblastoma cell line, termed GT9, from a biopsy sample of a female adult patient with glioblastoma multiforme. The line has now undergone over 60 passages and has been successfully cultured after cryopreservation. Immunofluorescence analyses with a panel of monoclonal antibodies were positive for glial fibrillary acidic protein and vimentin, and negative for neurofilament, galactocerebroside, and fibronectin, a pattern typical of glial cells. Based on a tetraploid, the composite karyotype of GT9 cells included the loss of chromosome 10, gain of chromosome 7, and the presence of double minute chromosomes, three of the most common karyotypic abnormalities in glioblastoma. Sequence analysis of p53 cDNA revealed a homozygous double mutation at codon 249 (commonly mutated in aflatoxin-associated hepatocellular carcinoma) and codon 250. Moreover, there was a complete absence of wild-type p53. However, unlike the majority of human glioblastomas previously described, the expression of platelet-derived growth factor-B (PDGF-B), a potent mitogenic autocrine factor, was low in GT9 cells. The expression and phosphorylation of c-Jun and Jun-B, downstream mediators of the PDGF pathway, were also low. Thus, deregulation of the PDGF pathway does not appear to be involved in the pathogenesis of the GT9 glioblastoma. Conversely, Jun-D, a negative regulator of cell growth, was also low. In addition, Phosphorylated Egr-1, a recently reported suppressor of PDGF-B/v-sis-transformed cells, was also low, suggesting that the lack of activation of the PDGF pathway was not due to these suppressive mechanisms. The circumstance of a weak or inactive PDGF-B autocrine mechanism in human glioblastoma paired with a homozygously altered p53 suggests that the loss of suppressor function of p53 may be a major contribution to the transformed phenotype of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed Rasheed, B. K.; Fuller, G. N.; Friedman, A. H., et al. Loss of heterozygosity for 10q loci in human gliomas. Genes, Chromosomes & Cancer 5:75–82; 1992.

    Article  Google Scholar 

  • Bigner, D. D.; Bigner, S. H.; Ponten, S. H., et al. Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human glioblastomas. J. Neuropathol. & Exp. Neurol. 40:201–229; 1981.

    CAS  Google Scholar 

  • Bigner, S. H.; Mark, J.; Bigner, D. D. Cytogenetics of human brain tumors. Cancer Genet. Cytogenet. 47:141–154; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Bressac, B.; Kew, M.; Wands, J., et al. Selective G to T mutations of the p53 gene in hepatocellular carcinoma from southern Africa. Nature 350:429–431; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Bronzert, D. A.; Pantazis, P.; Antoniades, H. N., et al. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc. Natl. Acad. Sci. USA 84:5763–5767; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Brow, M. D. Sequencing withTaq DNA polymerase. In: Innis, M. A.; Gelfand, D. H.; Sninsky, J. J., et al., eds. PCR protocols: a guide to methods and applications. New York: Academic Press; 1990:189–196.

    Google Scholar 

  • Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thyiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Choucair, A. K.; Levin, V. A.; Gutin, P. H., et al. Development of multiple lesions during radiation therapy and chemotherapy in patients with gliomas. J. Neurosurg. 65:654–658; 1986.

    PubMed  CAS  Google Scholar 

  • Copeman, M. C. The putative tumor-suppressor gene on chromosome 6q. Pathology 24:307–309; 1992.

    PubMed  CAS  Google Scholar 

  • Crowley, N. J.; Darrow, T. L.; Quinn-Allem, M. A., et al. MHC-restricted recognition of autologous melanoma by tumor-specific cytotoxic T cells. Evidence for restriction by a dominant HLA-A allele. J. Immunol. 146:1692–1699; 1991.

    PubMed  CAS  Google Scholar 

  • Crowley, N. J.; Slinghuff, C. L.; Darrow, T. L., et al. Generation of human autologous tumor specific cytotoxic T cells using HLA-A2 matched allogeneic melanoma. Cancer Res. 50:492–498; 1990.

    PubMed  CAS  Google Scholar 

  • el-Deiry, W. S.; Tokino, T.; Velculescu, V. E., et al. WAFl, a potential mediator of p53 tumor suppression. Cell 75:817–825; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Finlay, C. A.; Hind, P. W.; Tan, T.-H., et al. Activating mutations for transformation by p53 produce a gene product that forms an hsp-70-p53 complex with an altered half-life. Mol. Cell. Biol. 8:531–539; 1988.

    PubMed  CAS  Google Scholar 

  • Frankel, R. H.; Bayona, W.; Koslow, M., et al. p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res. 52:1427–1433; 1992.

    PubMed  CAS  Google Scholar 

  • Fults, D.; Brockmeyer, D.; Tullous, M. W., et al. p53 mutations and loss of heterozygosity on chromosome 17 and 10 during human astrocytoma progression. Cancer Res. 52:674–679; 1992.

    PubMed  CAS  Google Scholar 

  • Grover-Bardwick, A.; Adamson, E.; Mercola, D. Transformation-specific pattern of phosphorylation of c-Jun, Jun-B, Jun-D, and Egr-1 inv-sis transformed cells. Carcinogenesis 7:1667–1674; 1994.

    Article  Google Scholar 

  • Holladay F. P.; Heitz, T.; Wood, G. W. Cytotoxic T lymphocytes, but not lymphokine activated killer cells, exhibit anti-tumor activity against established intercerebral gliomas. J. Neurosurg. 77:757–762; 1992.

    PubMed  CAS  Google Scholar 

  • Hsu, I. C.; Metcalf, R. A.; Sun, T., et al. Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350:427–428; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Huang, R. P.; Darland, T.; Okumura, D., et al. Suppression ofv-sis-dependent transformation by the transcription factor, Egr-1. Oncogene 9:1367–1377; 1994.

    PubMed  CAS  Google Scholar 

  • ISCN. Guidelines for cancer cytogenetics, supplement to an international system for human cytogenetics nomenclature, Mitelman, F., ed. Basel, Switzerland: S. Karger; 1991:1–54.

    Google Scholar 

  • James, C. D.; Carlborn, E.; Dumansli, J. P., et al. Clonal genomic alterations in glioma malignancy stages. Cancer Res. 48:5546–5551; 1988.

    PubMed  CAS  Google Scholar 

  • Jenkins, J. R.; Stürzbecher, H. W. The p53 oncogene. In: Reddy, E. P.; Skalka, A. M.; Curran, T., eds. The oncogene handbook. Amsterdam: Elsevier; 1988:403–423.

    Google Scholar 

  • Kornblith, P. K.; Welch, W. C.; Bradley, M. K. The future of therapy for glioblastoma. Surg. Neurol. 39:538–543; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kruse, C. A.; Mitchell, D. H.; Kleinschmidt-DeMasters, B. K., et al. Characterization of a continuous human glioma line DBTRG-05MG: growth characteristics, karyotype, receptor expression, and tumor suppressor gene analysis. In Vitro Cell. Dev. Biol. 28A:609–614; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Levin, V. A.; Sheline, G. E.; Gutin, P. H. In: Neoplasms of the central nervous system. DeVita, V. T.; Hellman, S.; Rosenberg, S. A., eds. Cancer, principles and practice of oncology, neoplasms of the central nervous system. Philadelphia: J. B. Lippincott Co.; 1989:1557–1611.

    Google Scholar 

  • Mahaley, M. S.; Bigner, D. D.; Dudka L. F., et al. Immunobiology of primary intracranial tumors. J. Neurosurg. 59:201–207; 1983.

    Article  PubMed  Google Scholar 

  • Mercola, D. Platelet-derived growth factor, transformation, and anti-sense: models wanted. In: Erickson, R.; Izart, J., eds. Gene regulation. Vol. 1. New York: Raven Press; 1992:329–353.

    Google Scholar 

  • Mercola, D.; Adamson, E.; Grover-Bardwick, A. Transformation by thesis oncogene is specifically correlated with hyperphosphorylation of multiple transactivation factors. In: Novak, J.; McMaster J. H., eds. Frontiers of osteosarcoma research. Seattle: Hogrefe & Huber Publishers; 1993:375–386.

    Google Scholar 

  • Mercola, D.; Carpenter, P.; Grover-Bardwick, A., et al. Rapid, complete and reversible transformation byv-sis precedes irreversible transformation. Oncogene 7:1793–1803; 1992.

    PubMed  CAS  Google Scholar 

  • Negrini, M.; Sabbiono, S.; Possati, L., et al. Suppression of tumorigenicity of breast cancer cells by microcell-mediated chromosome transfer: studies on chromosome 6 and 11. Cancer Res. 54:1331–1336; 1994.

    PubMed  CAS  Google Scholar 

  • Nigro, J. M.; Baker, S. J.; Preislinger, A. C., et al. Mutations in the p53 gene occur in diverse human tumor types. Nature 342:705–708; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Ohgaki, H.; Hard, G. C.; Hirota, N., et al. Selective mutation of codons 204 and 213 of the p53 gene in rat tumors induced by alkylating N-nitroso compounds. Cancer Res. 52:2995–2998; 1992.

    PubMed  CAS  Google Scholar 

  • Pandolfi, F.; Boyle, L. A.; Tretin, L., et al. Expression of HLA-A2 antigen in human melanoma cell lines and its role in T cell recognition. Cancer Res. 51:3164–3170; 1991.

    PubMed  CAS  Google Scholar 

  • Pfarr, C.; Mechta, F.; Spyrou, G., et al. Mouse Jun-D negatively regulates fibroblast growth and antagonizes transformation by Ras. Cell 76:747–760; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Ragona, G.; Edwards, S.; Mercola, D., et al. Egr-1, a putative transcription factor, is synthesized by baculovirus-infected insect cells in an active, DNA-binding form. DNA Cell Biol. 10:61–66; 1991.

    PubMed  CAS  Google Scholar 

  • Ransom, D. T.; Ritland, S. R.; Jenkins, R. B., et al. Loss of heterozygosity studies in human gliomas. Proc. Annu. Meet. Am. Assoc. Cancer Res. 32:1794; 1991. (abstract)

    Google Scholar 

  • Schimke, R. T. Gene amplification in cultured cells. J. Biol. Chem. 263:5989–5992; 1987.

    Google Scholar 

  • Shawler, D. L.; McCallister, T. J.; Sobol, R. E., et al. Serologic and cellular assays to monitor therapy with murine monoclonal antibodies. J. Clin. Lab. Anal. 1:184–190; 1987.

    Article  Google Scholar 

  • Sidransky, D.; Mikkelsen, T.; Schwechheimer, K., et al. Clonal expansion of p53 mutant cells is associated with brain tumor progression. Nature 355:846–847; 1993.

    Article  Google Scholar 

  • Smeal, T.; Binetruy, B.; Mercola, D. A., et al. Phosphorylation of c-Jun serines 63 and 73 is required for oncogenic and transcriptional cooperation with Ha-Ras. Nature 354:494–496; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Sobol, R. E.; Fakhrai, H.; Shawler, D., et al. Interleukin-2 gene therapy in a patient with glioblastoma. Gene Therapy (in press).

  • Taylor, J. A.; Watson, M. A.; Devereux, T. R., et al. p53 mutation hotspot in radon-associated lung cancer. Lancet 343:86–87; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Trojan, J.; Johnson, T. R.; Rudin, S. D., et al. Treatment and prevention of rat glioblastoma by immunogenic C6 cells expressing antisense insulin-like growth factor I RNA. Science 259:94–97; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ullrich, S. J.; Mercer, W. E.; Appela, E. Human wild-type p53 adopts a unique conformational and phosphorylation state in vivo during growth arrest of glioblastoma cells. Oncogene 7:1635–1643; 1992.

    PubMed  CAS  Google Scholar 

  • Van Meir, E G.; Kikuchi, T.; Tada, M., et al. Analysis of thep53 gene and its expression in human glioblastoma cells. Cancer Res. 54:649–652; 1994.

    PubMed  Google Scholar 

  • Von Deimling, A.; Eibl, R. H.; Ohgaki, H., et al. p53 Mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res. 52:2987–2990; 1992.

    Google Scholar 

  • Welch, D. R.; Chen, P.; Miele, M. E., et al. Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene 9:255–262; 1994.

    PubMed  CAS  Google Scholar 

  • Wen, S. F.; Nodelman, M.; Nared-Hood, K., et al. Retinoblastoma protein monoclonal antibodies with novel characteristics. J. Immunol. Methods 169:231–240; 1994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gjerset, R.A., Fakhrai, H., Shawler, D.L. et al. Characterization of a new human glioblastoma cell line that expresses mutant P53 and lacks activation of the PDGF pathway. In Vitro Cell Dev Biol - Animal 31, 207–214 (1995). https://doi.org/10.1007/BF02639435

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02639435

Key words

Navigation