Skip to main content
Log in

Cocultures of fetal and adult cardiomyocytes yield rhythmically beating rod shaped heart cells from adult rats

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Different models of isolated cardiomyocytes are generally used for biochemical, biophysical, and pharmacological studies. Fetal cardiomyocytes can be easily cultured for several weeks regaining their ability for rhythmical and synchronous contractions. For investigations, differentiated myocytes derived from adult hearts are closer to the in situ situation. Unfortunately, these cells at best exhibit irregular and asynchronous contractions at very low frequencies. Already 1 d after seeding calcium-tolerant rod-shaped adult cardiomyocytes on a suitable substrate, the differentiated cells begin to dedifferentiate forming a confluent monolayer. After 7–10 d their beating activities are like those of fetal cells. Therefore, we tried to combine the advantages of both cell types to achieve fully differentiated cardiomyocytes, rod-shaped and rhythmically beating, isolated from adult hearts. Using contractile fetal cells as a substrate for the adult cardiomyocytes, freshly seeded differentiated adult myocytes are paced by the contraction frequency of the fetal monolayer. As a consequence, the rod-shaped adult cardiomyocytes reach frequencies of more than 140 cycles/min without external electrical stimulation. This model enables us to study cardiomyocytes in a state very similar to the in situ situation with respect to morphology, integrity, and contractile behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrio-Dupont, M.; De Ney, D. Compartmentation of high-energy phosphates in resting and beating heart cells. Biochim. Biophys. Acta 851:249–256; 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Bhatti, S.; Zimmer, G.; Bereiter-Hahn, J. Enzyme release from chick myocytes during hypoxia and reoxygenation: dependance on pH. J. Mol. Cell. Cardiol. 21:995–1008; 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Claycomb, W. C. Long-term culture and characterization of the adult ventricular and atrial cardiac muscle cell. Basic Res. Cardiol. 80:171–174; 1985.

    PubMed  Google Scholar 

  4. Eid, H.; Larson, D. M.; Springhorn, J. P., et al. Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ. Res. 71:40–50; 1992.

    PubMed  CAS  Google Scholar 

  5. Entman, M. L.; Youker, K.; Shappell, S. B., et al. Neutrophil adherence to isolated adult canine myocytes. J. Clin. Invest. 85:1497–1506; 1990.

    Article  PubMed  CAS  Google Scholar 

  6. Eppenberger, M. E.; Hauser, I.; Baechi, T., et al. Immuno-cytochemical analysis of the regeneration of myofibrils in long-term cultures of adult cardiomyocytes of the rat. Dev. Biol. 130:1–5; 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Ganote, C. E.; Nayler, W. G. Contracture and the calcium paradox. J. Mol. Cell. Cardiol. 17:733–745; 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Geisbuhler, T. P.; Rovetto, M. J. Lactate does not enhance anoxia/reoxygenation damage in adult rat cardiac myocytes. J. Mol. Cell. Cardiol. 22:1325–1335; 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Gilbert, S. F.; Migeon, B. R.d-valine as a selective agent for normal human and rodent epithelial cells in culture. Cell 5:11–17; 1975.

    Article  PubMed  CAS  Google Scholar 

  10. Horackova, M.; Mapplebeck, C. Electrical, contractile, and ultrastructural properties of adult rat and guinea-pig ventricular myocytes in long-term primary cultures. Can. J. Physiol. Pharmacol. 67:740–750; 1989.

    PubMed  CAS  Google Scholar 

  11. Isenberg, G.; Klöckner, U. Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium”. Pflügers Arch. 395:6–18; 1982.

    Article  PubMed  CAS  Google Scholar 

  12. Jacobson, S. L.; Banfalvi, M.; Schwarzfeld, T. A. Long-term primary cultures of adult human and rat cardiomyocytes. Basic Res. Cardiol. 80:79–82; 1985.

    PubMed  Google Scholar 

  13. Libby, P. Long-term culture of contractile mammalian heart cells in a defined serum-free medium that limits non-muscle cell proliferation. J. Mol. Cell. Cardiol. 16:803–811; 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Löw, I.; Friedrich, T.; Schoeppe, W. Synthesis of shock proteins in cultured fetal mouse myocytes. Exp. Cell Res. 181:451–459; 1989.

    Article  Google Scholar 

  15. Marino, T. A.; Kuseryk, L.; Lauva, I. K. Role of contraction in the structure and growth of neonatal rat cardiocytes. Am. J. Physiol. 253:H1391-H1399; 1987.

    PubMed  CAS  Google Scholar 

  16. Neyses, L.; Vetter, H. Isolated myocardial cells: a new tool for the investigation of hypertensive heart disease. J. Hypertens. 8:S99-S102; 1990.

    CAS  Google Scholar 

  17. Pelzer, D.; Cavalie, A.; Trautwein, W. Cardiac calcium channel currents at the level of single cells and single channels. Basic Res. Cardiol. 80:65–70; 1985.

    PubMed  Google Scholar 

  18. Piper, H. M. Isolierte adulte Herzmuskelzellen als Myokardmodell. Stuttgart, Germany: Georg Thieme Verlag; 1985:37.

    Google Scholar 

  19. Piper, M.; Jacobsen, S. T.; Schwartz, P. Determinants of cardiomyocyte development in long-term primary culture. J. Mol. Cell. Cardiol. 20:825–835; 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Rappaport, L.; Samuel, J. L. Microtubules in cardiac myocytes. Int. Rev. Cytol. 113:101–143; 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Riehle, M.; Bereiter-Hahn, J. Ouabain and digitoxin as modulators of chick embryo cardiomyocyte energy metabolism. Drug Res.; in press.

  22. Schlage, W. K.; Bereiter-Hahn, J. A microscope perfusion respirometer for continuous respiration measurement of cultured cells during microscopic observation. Microsc. Acta 87:19–34; 1983.

    PubMed  CAS  Google Scholar 

  23. Schwartz, P.; Piper, H. M.; Spahr, R., et al. Development of new intercellular contacts between adult cardiac myocytes in culture. Basic Res. Cardiol. 80:75–78; 1985.

    PubMed  Google Scholar 

  24. Spahr, R.; Piper, H. M.; Schwartz, P., et al. Morphological dedifferentiation of adult cardiac myocytes in coculture with hepatocytes. Basic Res. Cardiol. 80:83–86; 1985.

    PubMed  Google Scholar 

  25. Volz, A.; Piper, H. M.; Siegmund, B., et al. Longevity of adult ventricular rat heart muscle cells in serum-free primary culture. J. Mol. Cell. Cardiol. 23:161–173; 1991.

    Article  PubMed  CAS  Google Scholar 

  26. Weisensee, D.; Bereiter-Hahn, J.; Schoeppe, W., et al. Effects of cytokines on the contractility of cultured cardiac myocytes. Int. J. Immunopharmacol. 15:581–587; 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Yazawa, K.; Kaibara, M.; Ohara, M., et al. An improved method for isolating cardiac myocytes useful for patch-clamp studies. Jpn. J. Physiol. 40:157–163; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An abstract of this article was previously published in Eur. J. Cell Biol. 57 (Suppl.36): 86; 1992.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisensee, D., Seeger, T., Bittner, A. et al. Cocultures of fetal and adult cardiomyocytes yield rhythmically beating rod shaped heart cells from adult rats. In Vitro Cell Dev Biol - Animal 31, 190–195 (1995). https://doi.org/10.1007/BF02639433

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02639433

Key words

Navigation