Skip to main content
Log in

Fatty alcohols

  • Published:
Journal of the American Oil Chemists Society

Summary

The two commercially important processes for the production of fatty alcohols (sodium reduction and hydrogenolysis) have been reviewed with respect to operations, types of alcohols obtainable, relative economics, properties and uses of the fatty alchols.

The sodium-reduction process is applicable to the reduction of saturated as well as unsaturated esters, and in the latter case the unsaturation of the raw materials is preserved in the product alcohols. Hydrogenolysis, on the other hand, produces predominantly saturated alcohols, regardless of the unsaturation of the raw materials, except in instances where special catalysts are used.

Hydrogenolysis has the advantages of cheaper raw materials, wider choice of feed stocks, and wider choice of locations whereas sodium reduction is more flexible (permits production of both saturated and unsaturated fatty alcohols), requires a lower initial investment, involves simpler operation and maintenance, and yields products of superior quality for detergent uses.

The physical and chemical properties of fatty alcohols have been reviewed briefly.

While the largest current market for fatty alcohols lies in the field of detergent preparation, the unsaturated fatty alchols and their derivatives also have many potential uses in the manufacture of such other products as lubricant additives, waxes, and wetting and emulsifying agents. Markets for these fatty alcohols depend upon the results of application research and product development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kraft, F., Ber.,16, 1,714 (1883).

    Google Scholar 

  2. Bouveault, L., and Blanc, G., Compt. rend.,136, 1,676 (1903);ibid., 137, 328 (1903);ibid., Bull. Soc. Chem.,29, 787 (1903);ibid., 31, 666 (1904).

    CAS  Google Scholar 

  3. Adkins, H., and Conner, R., J. Am. Chem. Soc.,53, 1,091, 1,095 (1931).

    CAS  Google Scholar 

  4. Hansley, V. L., Ind. Eng. Chem.,39, 55 (1947).

    Article  CAS  Google Scholar 

  5. Kastens, M. L., and Peddicord, H., ibid. 438 (1949).

    Article  CAS  Google Scholar 

  6. Kamlet, J., (Emery Industries Inc.), U. S. Patent 2,563,044 (1951).

  7. Henke, C. O., and Parmelee, H. M. (E. I. DuPont de Nemours and Co.), U. S. Patent 2,104,803 (1953).

  8. Blinka, J., and Peddicord, H. J. (The Procter and Gamble Co.), U. S. Patent 2,647,932.

  9. U. S. Patents: 1,839,974 (1932); 2,009,948 (1935); 2,079,414 (1937); 2,080,419 (1937); 2,094,127 (1937); 2,109,844 (1938); 2,127,367 (1938); 2,114,717 (1938); 2,116,552 (1938); 2,241,417 (1941); 2,340,343 (1944); 2,340,344 (1944); 2,340,687 (1944); 2,340,690 (1944); 2,340,691 (1944); 2,347,562 (1944); 2,375,495 (1945); 2,374,379 (1945); 2,389,284 (1945); 2,413,612 (1946).

  10. British Patents: 569,923 (1945); 570,057 (1945); 582,699 (1946); 589,380 (1947); 585,219 (1947); 584,939 (1947).

  11. French Patent 802,542 (1936).

  12. German Patent 662,731 (1938).

  13. Italian Patents: 430,809; 420,794 (1948).

  14. Sinozaki, Y., and Sumi, S., J. Agr. Chem. Soc., Japan,14, 1,113 (1938);ibid., 15, 531 (1939).

    CAS  Google Scholar 

  15. Komori, S., J. Soc. Chem. Ind. Japan,41, 219 (1938);ibid., 43, 34, 122, 337, 428 (1940);ibid., 44, 740 (1941);ibid., 45, 141 (1942).

    Google Scholar 

  16. Sinozaki, Y., and Sumi, S., J. Agr. Chem. Soc., Japan,16, 23 (1940).

    CAS  Google Scholar 

  17. Iwai, J. Nippon Oil Technol. Soc.,2, No. 6, 19 (1949).

    CAS  Google Scholar 

  18. Komori, S., J. Chem. Soc., Japan, Ind. Chem. Sec.,55, 237 (1952).

    CAS  Google Scholar 

  19. Guyer, A.,et al., Helv. Chim. Acta,30, 39 (1947).

    Article  CAS  Google Scholar 

  20. U. S. Patent 2,413,612 (1946); British Patents: 582,699 (1946); 584,939; 585,219; 589,380 (1947).

  21. The DeNora High Pressure Hydrogenation Process for the Manufacture of Higher Alcohols, The Lummus Company, 385 Madison avenue, New York 17.

  22. U. S. Patent 1,963,997 (1934).

  23. Knight, H. B., Witnauer, L. P., Coleman, J. S., and Noble, W. R. Jr., Anal. Chem,24, 1331 (1952).

    Article  CAS  Google Scholar 

  24. Stage, H., Fette u. Seifen,53, No. 11, 677 (1951).

    Article  CAS  Google Scholar 

  25. Doss, M. P., “Properties of the Principal Fats, Fatty Oils, Waxes, Fatty Acids and Their Salts,” The Texas Company, New York (1952).

    Google Scholar 

  26. Descollognes, L., Am. Perfumer Essent. Oil Rev.,23, 237 (1928).

    Google Scholar 

  27. Prins, H. J., ibid. 68 (1917).

    CAS  Google Scholar 

  28. Prevost, R. H., Chem. Age (London)37, 269 (1937).

    CAS  Google Scholar 

  29. Redgrove, H. S., Am. Perfumer,38, No. 2, 32 (1939).

    CAS  Google Scholar 

  30. Stiepel, C., German Patent 476,261 (1925).

  31. Jannaway, S. P., Perfumery Essent. Oil Record,30, 45 (1939).

    CAS  Google Scholar 

  32. Sedgwick, F. H., Soap, Perfumery, and Cosmetics,12, 161 (1939).

    CAS  Google Scholar 

  33. Elliot, C. J., Australian J. Pharm.,31, 111 (1950).

    CAS  Google Scholar 

  34. Gialdi, F., and Nascimbene, A., Farm. sci. e tech.,4, 166 (1949).

    CAS  Google Scholar 

  35. Halpern, A., and Zopf, L. C., J. Am. Pharm. Assoc., Sci. Ed.,36, 101 (1947).

    Article  CAS  Google Scholar 

  36. Husten, M. J., Riedel, B. E., Murray, J. R., and Groves, G. A., Am. Profess. Pharmacist,15, 145 (1949).

    Google Scholar 

  37. Holliday, C. B., Perfumery Essent. Oil Record,34, 111 (1943).

    CAS  Google Scholar 

  38. Doubleday, C., Soap., Perfumery and Cosmetics,28, 715 (1950).

    Google Scholar 

  39. Augustin, J., Mfg. Chemist,6, 77 (1935); Soap,11, No. 5, 59 (1935).

    CAS  Google Scholar 

  40. Chem. Age (London),62, 921 (1950).

  41. Stirton, A. J., Weil, J. M., Stawitzke, A. A., and James, S., J. Am. Oil Chemists’ Soc.,29, 198 (1952).

    Article  CAS  Google Scholar 

  42. Schoeller, C., and Wittwer, M., (I. G. Farben) U. S. Patent 1, 970,578 (1934).

  43. Sisley, J. P., Industrie chim. belge.,18, 225 (1953).

    CAS  Google Scholar 

  44. Gavlin, G., Swire, E. A., and Jones, S. P. Jr., Ind. Eng. Chem.,45, 2,327 (1953); Revukas, A. J., (Tide Water Associated Oil Company) U. S. Patent 2, 489,671 (1949).

    Article  CAS  Google Scholar 

  45. Copenhaver, J. W., and Bigelow, M. H., “Acetylene and Carbon Monoxide Chemistry,” p. 55, New York, Reinhold Publishing Corporation, 1949.

    Google Scholar 

  46. Swern, Daniel, Findley, T. W., and Scanlan, T. J., J. Am. Chem. Soc.,66, 1,926 (1944).

    Article  Google Scholar 

  47. Knight, H. B., Koos, R. E., and Swern, D., Ibid. 6,214 (1953).

    Article  Google Scholar 

  48. Arundale, E., and Kodeska, L. A., Chem. Rev.,51, 505 (1952).

    Article  CAS  Google Scholar 

  49. Groggins, “Unit Processes in Organic Synthesis,” 4th ed., p. 555, New York, McGraw-Hill Book Company, 1952.

    Google Scholar 

  50. Pryde, E. H., J. Am. Oil Chemists’ Soc.,28, 16 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Wilson, G.R. Fatty alcohols. J Am Oil Chem Soc 31, 564–568 (1954). https://doi.org/10.1007/BF02638573

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02638573

Keywords

Navigation