Skip to main content
Log in

On an invariant related to a linear inequality

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

Let\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\alpha } = (\alpha _1 ,\alpha _2 , \ldots \alpha _m ) \in \mathbb{R}_{ > 0}^m \). Let\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\alpha } _{i,j} \) be the vector obtained from\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\alpha } \) on deleting the entries αi and αj. We investigate some invariants and near invariants related to the solutions\(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \in } \in \{ \pm 1\} ^{m - 2} \) of the linear inequality

$$\left| {\alpha _i - \alpha _j } \right|< \left\langle {\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \in } ,\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\alpha } _{i,j} } \right\rangle< \alpha _i + \alpha _j ,$$

, where <,> denotes the usual inner product. One of our methods relates, by the use of Rademacher functions, integrals involving products of trigonometric functions to these quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. S. Gradshteyn andI. M. Ryzhik, Table of integrals, series, and products. New York 1980.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besser, A., Moree, P. On an invariant related to a linear inequality. Arch. Math 79, 463–471 (2002). https://doi.org/10.1007/BF02638383

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02638383

Mathematics Subject Classification (1991)

Navigation