Skip to main content
Log in

Strong cofibrations and fibrations in enriched categories

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

We define strong cofibrations and fibrations in suitably enriched categories using the relative homotopy extension resp. lifting property. We prove a general pairing result, which for topological spaces specializes to the well-known pushout-product theorem for cofibrations. Strong cofibrations and fibrations give rise to cofibration and fibration categories in the sense of homotopical algebra. We discuss various examples; in particular, we deduce that the category of chain complexes with chain equivalences and the category of categories with equivalences are symmetric monoidal proper closed model categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Baues, Algebraic homotopy. Cambridge 1989.

  2. F. Borceux, Handbook of categorial algebra II. Encyclopedia Math. Appl. 1994.

  3. A. K. Bousfield andE. M. Friedlander, Homotopy theory of Γ-spaces, spectra, and bisimplical sets. LNM658, 80–130, Berlin-Heidelberg-New York 1978.

    MathSciNet  Google Scholar 

  4. D. Christensen andM. Hovey, Quillen model structures for relative homological algebra. Preprint 2000, math. KT/0011216.

  5. T. tom Dieck, K. H. Kamps undD. Puppe, Homotopietheorie. LNM157, Berlin-Heidelberg-New York 1970.

  6. A. Dold, Zur Homotopietheorie der Kettenkomplexe. Math. Ann.140, 278–298 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  7. A. D. Elmendorf, I. Kriz, M. A. Mandell andJ. P. May, Rings, modules, and algebras in stable homotopy theory. Amer. Math. Soc. Surveys and Monographs47 (1997).

  8. M. Hovey, Monoidal model categories. Preprint 1998, math.AT/9803002.

  9. G. M. Kelly, Basic concepts of enriched category theory. London Math. Soc. Lecture Note Series64, Cambridge 1982.

  10. L. G. Lewis, Jr., The stable category and generalized Thom spectra. Thesis, University of Chicago (1978).

  11. L. G. Lewis, J. P. May andM. Steinberger (with contributions byJ. E. McClure), Equivariant stable homotopy theory. LNM1213, Berlin-Heidelberg-New York 1986.

  12. M. C. McCord, Classifying spaces and infinite symmetric products. Trans. Amer. Math. Soc.146, 273–298 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  13. D. G. Quillen, Homotopical algebra. LNM43, Berlin-Heidelberg-New York 1967.

  14. R. Schwänzl andR. M. Vogt, Cofibration and fibration structures in enriched categories. Preprint 97-044, ftp://ftp.uni-bielefeld.de/pub/papers/sfb343/pr97044.ps.gz.

  15. S. Schwede andB. E. Shipley, Algebras and modules in monoidal model categories. Proc. London Math. Soc. (3),80, 491–511 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Strøm, Note on cofibrations II. Math. Scand.22, 130–142 (1968).

    MATH  MathSciNet  Google Scholar 

  17. A. Strøm, The homotopy category is a homotopy category. Arch. Math.23, 435–441 (1972).

    Article  MATH  Google Scholar 

  18. R. M. Vogt, Convenient categories of topological spaces for homotopy theory. Arch. Math.22, 545–555 (1971).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Eine überarbeitete Fassung ging am 5. 12. 2001 ein

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwänzl, R., Vogt, R.M. Strong cofibrations and fibrations in enriched categories. Arch. Math 79, 449–462 (2002). https://doi.org/10.1007/BF02638382

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02638382

Mathematics Subject Classification (2000)

Navigation