Abstract
On a large class of two-dimensional anisotropic meshes, the infsup condition (stability) is proved for the triangular and quadrilateral finite element pairs suggested by Bernardi/Raugel and Fortin. As a consequence the pairs\(\mathcal{P}_2 - \mathcal{P}_0 ,\mathcal{Q}_2 - \mathcal{P}_0 \), and\(\mathcal{Q}'_2 - \mathcal{P}_0 \) turn out to be stable independent of the aspect ratio of the elements.
This is a preview of subscription content, access via your institution.
References
Acosta, G., Durán R.G.: The maximum angle condition for mixed and non-conforming elements: application to the Stokes equations. SIAM J. Numer. Anal.37, 18–36 (1999)
Ainsworth, M., Coggins, P.: The stability of mixedhp-finite element methods for Stokes flow on high aspect ratio elements. SIAM J. Numer. Anal.38, 1721–1761 (2000)
Apel, Th.: Anisotropic finite elements: local estimates and applications. (Advances in Numerical Mathematics) Stuttgart: Teubner 1999
Apel, Th., Nicaise, S., Schöberl, J.: A non-conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges. IMA J. Numer. Anal.21, 843–856 (2001)
Apel, Th., Randrianarivony, H.M.: Stability of discretizations of the Stokes problem on anisotropic meshes. Math. Comput. Simulation61, 437–447 (2003)
Becker, R.: An adaptive finite element method for the incompressible Navier-Stokes equations on time-dependent domains. Dissertation. Heidelberg: Ruprecht-Karls-Universität 1995
Becker, R., Rannacher, R.: Finite element solution of the incompressible Navier-Stokes equations on anisotropically refined meshes. In: Hackbusch, W., Wittum, G. (eds.): Fast solvers for flow problems. (Notes on numerical fluid mechanics,49) Wiesbaden: Vieweg 1995, pp. 52–62.
Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comp.44, 71–79 (1985)
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. New York: Springer 1991
Ciarlet, P.G.: The finite element method for elliptic problems. Amsterdam: North-Holland 1978. Reprinted: Philadelphia SIAM 2002
Durán, R.G., Hernández, E., Hervella-Nieto, L., Liberman, E., Rodríguez, R.: Error estimates for low-order isoparametric quadrilateral finite elements for plates. SIAMJ, Numer. Anal.41, 1751–1772 (2003)
Durán, R.G., Liberman, E.: On mixed finite element methods for the Reissner-Mindlin plate model. Math. Comp.58, 561–573 (1992)
Durán, R.G., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J.: Approximation of the vibration modes of a plate by Reissner-Mindlin equations. Math. Comp.68, 1447–1463 (1999)
Fortin, M.: Old and new finite elements for incompressible flows. Internat. J. Numer. Methods Fluids1, 347–364 (1981)
Girault, V., Raviart, P.-A.: Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer Series in Computational Mathematics5 Berlin: Springer 1986
Randrianarivony, M.: Stability of mixed finite element methods with anisotropic meshes. Master's thesis. Chemnitz: TU Chemnitz 2001
Schötzau, D., Schwab, Ch.: Mixedhp-FEM on anisotropic meshes. Math. Models Methods Appl. Sci.8, 787–820 (1998)
Schötzau, D., Schwab, Ch., Stenberg, R.: Mixedhp-FEM on anisotropic meshes. II. Hanging nodes and tensor products of boundary layer meshes. Numer. Math.83, 667–697 (1999)
Synge, J.L.: The hypercircle in mathematical physics. Cambridge: Cambridge University Press 1957
Toselli, A., Schwab, C.: Mixedhp-finite element approximations on geometric edge and boundary layer meshes in three dimensions. Numer. Math.94, 771–801 (2003)
Author information
Authors and Affiliations
Additional information
Both the visit of the first author in Valenciennes and the visit of the second author in Chemnitz were financed by the DFG (German Research Foundation), Sonderforschungsbereich 393.
Rights and permissions
About this article
Cite this article
Apel, T., Nicaise, S. The inf-sup condition for low order elements on anisotropic meshes. Calcolo 41, 89–113 (2004). https://doi.org/10.1007/BF02637257
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02637257
Keywords
- Isotropic Element
- Mixed Finite Element Method
- Anisotropic Mesh
- Hanging Node
- Regular Node