Skip to main content
Log in

The inflorescence stem fibers ofArabidopsis thaliana revoluta (ifl1) mutant

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana is gradually gaining significance as a model for wood and fiber formation.revolute/ifl1 is an important mutant in this respect. To better characterize the fiber system of therevolute/ifl1 mutant, we grew plants of two alleles (rev-9 in Israel andrev-1 in the USA) and examined the fiber system of the inflorescence stems using both brightfield and polarized light. Microscopic examination of sections of plants belonging to the two different alleles clearly revealed that, contrary to previous views, in 18 (13 in Israel and 5 in Ohio) out of 30 stems (20 in Israel and 10 in Ohio) the mutant produced the primary wavy fiber system of the inflorescence stems. Our findings are further supported by the fact that fibers are seen in the figures published in other studies of the mutant even when it was stated that there were no fibers. The impression of a total lack of the wavy band of fibers is in many cases just a result of poorly lignified secondary walls. This specific gene that reduces lignification in fibers is of great significance for biotechnological developments for the paper industry and thus for the global economy and ecology. We propose thatrevoluta, the first name given to this mutant (Talbert and others 1995), is more appropriate thanifl1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamura MM, Possenti M, Matteucci A, Baima S, Ruberti I, Morelli G. 2001. Development of the vascular system in the inflorescence stem ofArabidopsis New Phytol 151:381–389.

    Article  Google Scholar 

  • Beers EP, Zhao, C (2001) “Arabidopsis as amodel for investigating gene activity and function in vascular tissue” In: Moroshoshi, N., Komamine, A. (editors),Molecular breeding of woody plants, Elsevier Science B.V., Amsterdam, pp 43–52.

    Google Scholar 

  • Burk DH, Liu B, Zhong R, Morrison WH, Ye Z-H. 2001. A Katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13:807–827.

    Article  PubMed  CAS  Google Scholar 

  • Chaffey N. 2002. Why is there so little research into the cell biology of the secondary vascular system of trees? New Phytol 153:213–223.

    Article  Google Scholar 

  • Chaffey N, Cholewa E, Regan S, Sundberg B. 2002. Secondary xylem development inArabidopsis: a model for wood formation. Physiol Plant 114:594–600.

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw J, Morey PR. 1965. Induction of tension wood by 2,3,5-Tri-iodobenzoic acid Nature 205:816–818.

    Article  CAS  Google Scholar 

  • Dolan L, Janmaat K, Willemsen V, et al. 1993. Cellular organisation of theArabidopsis thaliana root. Development 119:71–84.

    PubMed  CAS  Google Scholar 

  • Dolan L, Roberts K. 1995. Secondary thickening in roots ofArabidopsis thaliana: anatomy and cell surface changes. New Phytol 131:121–128.

    Article  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, et al. 2003. Radial patterning ofArabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Sci 13:1768–1774.

    CAS  Google Scholar 

  • Flaishman MA, Loginovsky K, Lev-Yadun S. 2003. Regenerative xylen in influorescence stems ofArabidopsis thaliana J Plant Gr Regul 22:253–258.

    Article  CAS  Google Scholar 

  • Floyd SK, Bowman JL. 2004. Ancient microRNA target sequences in plants. Nature 428:485–486

    Article  PubMed  CAS  Google Scholar 

  • Funk V, Kositsup B, Zhao C, Beers EP. 2002. The Arabidopsis xylempeptidase XCP1 is a tracheary element vacuolar protein that may be a papain ortholog. Plant Physiol 128:84–94.

    Article  PubMed  CAS  Google Scholar 

  • Greb T, Clarenz O, Schäfer E, et al. 2003. Molecular analysis of theLATERAL SUPPRESSOR gene inArabidopsis reveals a conserved control mechanism for axillary meristem formation Genes Dev 17:1175–1187.

    Article  PubMed  CAS  Google Scholar 

  • Kirst M, Johnson AF, Baucom C, et al. 2003. Apparent homology of expressed genes from wood-forming tissues of loblolly pine (Pinus taeda L.) withArabidopsis thaliana. PNAS 100:7383–7388.

    Article  PubMed  Google Scholar 

  • Ko J-H, Han K-H, Park S, Yang J. 2004. Plant body weight-induced secondary growth in Arabidopsis and its transcription phenotype revealed by whole-transcriptome profiling. Plant Physiol 135:1069–1083.

    Article  PubMed  CAS  Google Scholar 

  • Lev-Yadun S. 1994. Induction of sclereid differentiation in the pith ofArabidopsis thaliana (L.) Heynh J Exp Bot 45:1845–1849.

    Article  CAS  Google Scholar 

  • Lev-Yadun S. 1997. Fibres and fibre-sclereids in wild-typeArabidopsis thaliana. Ann Bot 80:125–129.

    Article  Google Scholar 

  • Lev-Yadun S, Flaishman MA. 2001. The effect of submergence on ontogeny of cambium and secondary xylem and on fiber lignification in inflorescence stems ofArabidopsis. IAWA J 22:159–169.

    Google Scholar 

  • Leyser O, Day S. 2003. Mechanisms in plant development. Oxford: Blackwell Publishing Company.

    Google Scholar 

  • Little CHA, MacDonald JE, Olsson O. 2002. Involvement of indole-3-acetic acid in fascicular and interfascicular cambial growth and interfascicular extraxylary fiber differentiation inArabidopsis ihaliana inflorescence stems. Int J Plant Sci 163:519–529.

    Article  CAS  Google Scholar 

  • Lyndon RF. 1990. Plant development: the cellular basis. London: Unwin Hyman.

    Google Scholar 

  • Mattsson J, Ckurshumova W, Berleth T. 2003. Auxin signalling in Arabidopsis leaf vascular development. Plant Physiol 131:1327–1339.

    Article  PubMed  CAS  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. 2001. Role ofPHABULOSA andPHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz EM. 1997. Genetic control of cell division patterns in developing plants Cell 88:299–308.

    Article  PubMed  CAS  Google Scholar 

  • Nieminen KM, Kauppinen L, Helariutta Y. 2004. A weed for wood? Arabidopsis as a genetic model for xylem development Plant Physiol 135:653–659.

    Article  PubMed  CAS  Google Scholar 

  • Oh S, Park S, Han K-H. 2003. Transcriptional regulation of secondary growth inArabidopsis thaliana. J Exp Bot 54:2709–2722.

    Article  PubMed  CAS  Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE. 2001.REVOLUTA regulates meristem mitiation at lateral positions Plant J 25:223–236.

    Article  PubMed  CAS  Google Scholar 

  • Ratcliffe OJ, Riechmann JL, Zhang JZ. 2000.INTERFASCICULAR FIBERLESS1 is the same gene asREVOLUTA Plant Cell 12:315–317.

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E. 2002. Plant physiology3 Sunderland: Sinauer Associates Inc. Publishers.

    Google Scholar 

  • Talbert PB, Adler HT, Parks DW, Comai L. 1995. TheREVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems ofArabidopsis thaliana Development 121:2723–2735.

    PubMed  CAS  Google Scholar 

  • Timell TE. 1986. Compression wood in gymnosperms Berlin: Springer-Verlag.

    Google Scholar 

  • Ye Z-H. 2002. Vascular tissue differentiation and pattern formation in plants. Annu Rev Plant Biol 53:183–202.

    Article  PubMed  CAS  Google Scholar 

  • Ye Z-H, Freshour G, Hahn MG, Burk DH, Zhong R. 2002. Vascular development inArabidopsis. Crit Rev Cyol 220:225–256.

    CAS  Google Scholar 

  • Zhao C, Johnson BJ, Kositsup B, Beers EP. 2000. Exploiting secondary growth inArabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases Plant Physiol 123:1185–1196.

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye Z-H. 1999.IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11:2139–2152.

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye Z-H. 2001. Alteration of auxin polar transport in the Arabidopsisifl1 mutants Plant Physiol 126:549–563.

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Ye Z-H. 2004.Amphivasal vascular bundle 1, a gain-of-function mutation of theIFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45:369–385.

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Taylor JJ, Ye Z-H. 1997. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant Plant Cell 9:2159–2170.

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Burk DH, Ye Z-H. 2001. Fibers. A model for studying cell differentiation, cell elongation, and cell wall biosynthesis Plant Physiol 126:477–479.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simcha Lev-Yadun.

Additional information

Online publication: 7 April 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev-Yadun, S., Wyatt, S.E. & Flaishman, M.A. The inflorescence stem fibers ofArabidopsis thaliana revoluta (ifl1) mutant. J Plant Growth Regul 23, 301–306 (2004). https://doi.org/10.1007/BF02637253

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02637253

Key words

Navigation