Skip to main content
Log in

Parallel-beams/lever electrothermal out-of-plane actuator

  • Technical Papers
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We report on the design, modeling, fabrication and testing of a powerful electrothermal actuator allowing for various modes of movement and exhibiting forces large enough to be usable in a micro-tribotester. The performance of the actuator has been simulated combining numerical and analytical calculations, and then the results were compared with experiments performed in ambient conditions and in vacuum. Theoretical results and measurements are consistent if the temperature dependence of the properties of the polycrystalline Si is taken into account. The temperature dependence of the electrical resistivity and the linear thermal expansion coefficient of the Boron doped polycrystalline Si have been derived from experimental results and self-consistent numerical calculations. We delimited the reversible and irreversible actuation regions of the electrothermal actuator, thus the so-called “plastic deformation” for actuation at high electrical power can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chiao M; Liwei L (1997) Microactuators based on electrothermal expansion of clamped-clamped beams. DSC-Vol. 62/HTD-Vol.354 MEMS, ASME 75-80

  2. Conant RA; Muller RS (1998) Cyclic fatigue testing of surface-micromachined thermal actuators. DSC-Vol. 66, MEMS, ASME 273-277

  3. Deladi S; Krijnen G; Tas N, Elwenspoek M (2002) Three dimensional adhesion model for arbitrary rough surfaces. Proceedings ICCN 2002, 326–329

  4. Deladi S;Krijnen G;Elwenspoek M (2003) FEM assisted design and simulation of novel electrothermal actuators. Proceedings NanoTech 2003, Vol. I: 400–403

    Google Scholar 

  5. Deladi S;de Boer MJ;Krijnen G;Rosén D;Elwenspoek MC (2003) Innovative process development for a new micro-tribosensor using surface micromachining. J Micromech Microeng 13: 517–522

    Article  Google Scholar 

  6. Dufour I; Pellet C (2001) Reliability of micromechanical system: failure mechanisms. Proceedings 12th MME: 94–97

  7. Gardeniers JGE;Tilmans HAC;Visser CGG (1996) LPCVD silicon-rich silicon nitride films for applications in applications in micromechanics, studied with statistical experimental design. J Vac Sci Technol A 14: 2879–2891

    Article  Google Scholar 

  8. Glassbrenner CJ;Slack GA (1964) Thermal conductivity of silicon and germanium from 3°K to the melting point. Physical Review 134: A1058-A1069

    Article  Google Scholar 

  9. Hoffmann M;Nusse D;Voges E (2001) Electrostatic parallel-plate actuators with large deflections for use in optical moving-fiber switches. J Micromech.Microeng 11: 323–328

    Article  Google Scholar 

  10. Hull R (1999) Properties of crystalline silicon, INSPEC, London, ISBN 0-85296-933-3

    Google Scholar 

  11. Kamins T (1998) Polycrystalline silicon for integrated circuits and displays, Kluwer Academic Publishers, Boston, ISBN 0-7923-8224-2

    Google Scholar 

  12. Lin L;Pisano A;Howe RT (1997) A micro strain gauge with mechanical amplifier. Journal of MEMS 6: 313–321

    Google Scholar 

  13. Mastrangelo CH;Tai YC;Muller RS (1990) Thermophysical properties of low-residual stress, Silicon-rich, LPCVD silicon nitride films. Sensors and Actuators A 23: 856–860

    Article  Google Scholar 

  14. Muller RS;Howe RT;Senturia SD;Smith RL;White RM (1991) Microsensors. IEEE Press, New York, ISBN 0-87942-254-9

    Google Scholar 

  15. Okada Y;Tokumaru Y (1984) Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. J Applied Physics 56: 314–320

    Article  Google Scholar 

  16. Reid JR;Bright VM;Butler JT (1998) Automated assembly of flip-up micromirrors. Sensors and Actuators A 66: 292–298

    Article  Google Scholar 

  17. Sharpe WN; Yuan B; Vaidyanathan R (1997) Measurements of Young's modulus, Poisson’s ratio, and tensile strength of polysilicon. Proceedings IEEE MEMS: 424–429

  18. Sinclair M (2002) A high frequency resonant scanner using thermal actuation. Proceedings MEMS 2002, 698–701

  19. Tada H et al. (2000) Thermal expansions coefficient of polycrystalline silicon and silicon dioxide thin films at high temperatures. J Applied Physics 87: 4189–4193

    Article  Google Scholar 

  20. Vaganov V;Belov N;in't Hout S;Terry S (1999) Large force and deflection thermo-mechanical actuators. Proceedings Eurosensors XIII: 717–720

    Google Scholar 

  21. van Baar J; Wiegerink RW; Krijnen GJM; Lammerink TSJ; Elwenspoek MC (2001) Sensitive thermal flow sensor based on a micro-machined two dimensional resistor array. Proceedings Transducers '01: 1436–1439

  22. Yang X;Tai YC;Ho CM (1997) Micro bellow actuators. Technical Digest, International Conference on Solid-State Sensors and Actuators 1: 45–48

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Deladi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deladi, S., Krijnen, G. & Elwenspoek, M.C. Parallel-beams/lever electrothermal out-of-plane actuator. Microsystem Technologies 10, 393–399 (2004). https://doi.org/10.1007/BF02637110

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02637110

Keywords

Navigation