Skip to main content
Log in

Abstract

T 1-weighted images of the human brain obtained with the MDEFT sequence at 8 T are presented. These images are characterized by an excellent contrast and good signal to noise ratio. Importantly, results were obtained with adiabatic spin inversion and demonstrate that such pulses can be used event in the ultra high frequency (>300 MHz) range. It is thus possible to obtain high quality results at this field strength without violating SAR guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robitaille P-ML, Abduljalil AM, Kangarlu A, Zhang X, Yu Y, Burgess R, Bair S, Noa P, Yang L, Zhu H, Palmer B, Jiang Z, Chakeres DM, Spigos D. Human magnetic resonance imaging at 8 T NMR. Biomedicine 1998:11:263–5.

    CAS  Google Scholar 

  2. Abduljali AM, Kangarlu A, Zhang X, Burgess RE, Robitaille P-ML. Acquisition of human multisline images at 8 T. J Comp Assisr Tomogr 1999;23:335–40.

    Article  Google Scholar 

  3. Bottomley PA, Hardy CJ, Argesinger RE, Allen-Moore G. A review of1H nuclear magnetic relaxation pathology: are T1 and T2 diagnostic? Med Phys 1987;14:1–37.

    Article  PubMed  CAS  Google Scholar 

  4. Becker ED, Ferretti JA, Farrar TC. Driven equilibrium fourier transform spectroscopy. a new method for nuclear magnetic resonance signal enhancement. J Am Chem Soc 1969;91:7784–5.

    Article  PubMed  CAS  Google Scholar 

  5. Shoup RR, Becker ED. The driven equilibrium fourier trans-form NMR technique: an experimental study. J Magn Reson 1972;8:298–310.

    CAS  Google Scholar 

  6. Hochmann J, Kellerhals H. Proton NMR on deoxyhemoglobin: use of a modified DEFT technique. J Magn Reson 1980;38:23–39.

    CAS  Google Scholar 

  7. Iwaoka H, Sugiyama T, Matsuura H, Fujino K. A new pulse sequence for “Fast Recovery” fast-scan NMR imaging. IEEE Trans Biomed Eng 1984;13:41–6.

    Google Scholar 

  8. Van Uijen CMJ, Den Boef JH. Driven-equilibrium radiofrequency pulses in NMR imaging. Magn Reson Med 1984;1:502–7.

    Article  PubMed  Google Scholar 

  9. Maki JH, Johnson GA, Cofer GP, Macfall JR. SNR improvement in NMR microscopy using DEFT. J Magn Reson 1988;80:482–92.

    CAS  Google Scholar 

  10. Garwood M., Courneya D., Parish T. What are the limits of MRI resolution and sensitivity. Workshop on Special Topics in Medical Magnetic Resonance. Whistler (Bristish Columbia, Canada), 1990.

  11. Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim S-G, Menon R, Merkle H, Ogawa S, Salmi R. Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Quart 1993;9:259–77.

    CAS  Google Scholar 

  12. Lee J-H, Garwood M, Menon R, Adriany G, Andersen P, Truwit CL, Ugurbil K. High contrast and fast three-dimensional magnetic resonance imaging at high fields. Magn Reson Med 1995;34:308–12.

    Article  PubMed  CAS  Google Scholar 

  13. Tannus A., Garwood M. Multislice imaging using a single adiabatic frequency swept inversion pulse. Proceedings of the Fourth Meeting of the International Society of Magnetic Resonance in Medicine. New York (USA), 1996 p. 362.

  14. Bottomley PA, Edelstein WA. Power deposition in whole-body NMR imaging. Med Phys 1981;8:510–2.

    Article  PubMed  CAS  Google Scholar 

  15. Hoult DI, Chen C-N, Sank VJ. The field dependence of NMR imaging II. Arguments concerning an optimal field strength. Magn Reson Med 1986;3:730–46.

    Article  PubMed  CAS  Google Scholar 

  16. Pan JW, Vaughan JT, Kuzniecky RI, Pohost GM, Hetherington HP. High resolution neuroimaging at 4.1 T. Magn Reson Imag 1995;13:915–21.

    Article  CAS  Google Scholar 

  17. Duewell S, Wolff SD, Wen H, Balaban RS, Jezzard P. MR imaging contrast in human brain tissue: assessment and optimization at 4 T. Radiology 1996;199:780–6.

    PubMed  CAS  Google Scholar 

  18. Mason GF, Chu WJ, Hetherington HP. A general approach to error estimation and optimized experiment design, applied to multislice imaging of TI in human brain at 4.1 T. J Magn Reson 1997;126:18–29.

    Article  PubMed  CAS  Google Scholar 

  19. Vaughan JT, Hetherington HP, Otu JO, Pan JW, Pohost GM. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 1994;32:206–18.

    Article  PubMed  CAS  Google Scholar 

  20. Norris D.G. Low power multi-slice MDEFT imaging submitted. Proceedings: 16th Meeting of the European Society for Magnetic Resonance in Medicine and Biology. Seville (Spain).

  21. Schwarzbauer C, Morrissey SP, Haase A. Quantitative magnetic resonance imaging of perfusion using magnetic labeling of water proton spins within the detection slice. Magn Reson Med 1996;35:540–6.

    PubMed  CAS  Google Scholar 

  22. Leroy-Willig A. Does RF heating decrease at 8 Tesla. NMR Biomed 1999;12:115.

    Article  PubMed  CAS  Google Scholar 

  23. Robitaille P.M.L. Response to “Does RF heating decrease at 8 Tesla” NMR Biomed. 1999 in Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Norris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, D.G., Kangarlu, A., Schwarzbauer, C. et al. MDEFT imaging of the human brain at 8 T. MAGMA 9, 92–96 (1999). https://doi.org/10.1007/BF02634598

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634598

Keywords

Navigation