Skip to main content
Log in

In vitro culture of blood cells from the colonial protochordateBotryllus schlosseri

  • Growth Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Primary cultures of circulatory blood cells from the colonial tunicateBotryllus schlosseri were cultivated in 96-well plates for up to 3 mo. in a medium based on Dulbecco’s modified Eagle’s medium, supplemented with salts to the botryllid ascidian hemolymph osmolarity, HEPES buffer,l-glutamin, fetal bovine serum, and antibiotics. Intercellular bridges between granular pigment cells were established within 24 h. The viability of these cells decreased slowly, and most died within 1 mo. without any sign of cell proliferation. Other cell types remained in an arrested state and were subjected to a weekly medium exchange. Spontaneous cell proliferation was randomly recorded in 6 to 10% of the wells from 2 wk to 1 mo. This proliferation was followed by the formation of masses of cell clumps, from which uniform hemocytes (5 µm, lymphocytelike cells) migrated peripherally. Stress conditions, which included longer intervals between medium exchanges and partial medium replacement, increased the probability of cell proliferation. From each proliferating primary culture, we successfully performed up to 10 plating cycles over a period of 15 wk, during which the cells differentiate in size but are uniformly structured. This produced the firstBotryllus lymphocytelike cell line. From this stage, cell numbers remained constant for up to 6 mo. without increase in cell number. Several mitogenic factors were employed on primary cultures.Botryllus and sea cucumber hemolymphs and mixed interleukins were found to augment significantly proliferation of at least one specific cell size, whereas cells were not markedly responsive to lectins (Concavalin A, wheat germ agglutinin,Ulex europaeus agglutinin), insulin, and retinoic acid. The results are discussed with respect to future efforts in the development of tunicate blood cell cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck, G.; O’Brien, R. F.; Habicht, G. S. Invertebrate cytokines: the phylogenetic emergence of interleukin-1. BioEssays 11:62–67; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Berrill, N. J. The origin of vertebrates. New York: Oxford University Press; 1955.

    Google Scholar 

  • Boyd, H. C.; Brown, S. K.; Harp, J. A., et al. Growth and sexual maturation of laboratory cultured MontereyBotryllus schlosseri. Biol. Bull. 170:91–109; 1986.

    Article  Google Scholar 

  • Boyd, H. C.; Weissman, I. L.; Saito, Y. Morphologic and genetic verification that MontereyBotryllus and Woods HoleBotryllus are the same species. Biol. Bull. 178:239–250; 1990.

    Article  Google Scholar 

  • Coombe, D. R.; Ey, P. L.; Jenkin, C. R. Particle recognition by haemocytes from the colonial ascidianBotrylloides leachi: evidence that theB. leachi HA-2 agglutinin is opsonic. J. Comp. Physiol. B 154:509–521; 1984.

    Article  Google Scholar 

  • Ermark, T. H. An autoradiographic demonstration of blood cell renewal inStyla clava (Urochordata: Ascidiacea). Experientia 31:837–839; 1975.

    Article  Google Scholar 

  • Ermark, T. H. The renewing cell populations of ascidians. Am. Zool. 22:795–805; 1982.

    Google Scholar 

  • Ferkovich, S. M.; Oberlander, H. Growth factors in invertebratein vitro culture. In Vitro Cell. Dev. Biol. 27:483–486; 1991.

    Article  Google Scholar 

  • Freeman, G. The reticuloendothelial system of tunicates. J. Reticuloendothel. Soc. 7:183–194; 1970.

    PubMed  CAS  Google Scholar 

  • Goodbody, I. The physiology of ascidians. Adv. Mar. Biol. 12:1–149; 1974.

    Article  Google Scholar 

  • Grace, T. D. C. Establishment of four strains of cells from insect tissues grownin vitro. Nature 195:788–789; 1962.

    Article  PubMed  CAS  Google Scholar 

  • Grace, T. D. C. The morphology and physiology of cultured invertebrate cells. In: Vago, C., ed. Invertebrate tissue culture, vol. 1. New York: Academic Press; 1971:171–209.

    Google Scholar 

  • Grace, T. D. C. Development of insect cell culture. In: Maramorosch, K.; Mitsuhashi, J., eds. Invertebrate cell culture applications. New York: Academic Press; 1982:1–8.

    Google Scholar 

  • Harp, J. A.; Tsuchida, C. B.; Weissman, I. L., et al. Autoreactive blood cells and programmed cell death in growth and development of protochordates. J. Exp. Zool. 247:257–262; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Lynn, D. E. Methods for the development of cell lines from insects. J. Tissue Cult. Methods 12:23–29; 1989.

    Article  Google Scholar 

  • Milanesi, C.; Burighel, P. Blood cell ultrastructure of the ascidianBotryllus schlosseri. I. Hemoblast, granulocytes, morula cells and nephrocytes. Acta Zool. 59:135–147; 1978.

    Article  Google Scholar 

  • Milkman, R. Genetic and developmental studies ofBotryllus schlosseri. Biol. Bull. 132:229–243; 1967.

    Article  Google Scholar 

  • Raftos, D.; Stillman, D. L.; Cooper, E. L.In vitro culture of tissue from the tunicateStyela clava. In Vitro Cell. Dev. Biol. 26:962–970; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Rinkevich, B.; Weissman, I. L. Chimeras in colonial invertebrates: a synergistic symbiosis or somatic and germ cell parasitism. Symbiosis 4:117–134; 1987.

    Google Scholar 

  • Rosenthal, J.; Diamant, A.In vitro primary cell cultures fromPenaeus semisulcatus. In: Perkins, F. O.; Cheng, T. C., eds. Pathology in marine science. San Diego: Academic Press; 1990:7–13.

    Google Scholar 

  • Sabbadin, A. Studio sulle cellule del sangue diBotryllus schlosseri (Pallas) (Ascidiacea). Arch. It. Anat. Embriol. 60:33–67; 1955.

    CAS  Google Scholar 

  • Sabbadin, A.; Zaniolo, G. Sexual differentiation and germ cell transfer in the colonial ascidianBotryllus schlosseri. J. Exp. Zool. 207:289–304; 1979.

    Article  Google Scholar 

  • Schlumpberger, J. M.; Weissman, I. L.; Scofield, V. L. Separation and labeling of specific subpopulations ofBotryllus blood cells. J. Exp. Zool. 229:401–411; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Scofield, V. L.; Schlumpberger, J. M.; West, L. A., et al. Protochordate allorecognition is controlled by a MHC-like gene system. Nature 295:499–502; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Sugino, Y. M.; Ishikawa, M. The intercellular bridge of a blood cell in the ascidianCiona savignyi. Zool. Sci. 6:599–602; 1989.

    Google Scholar 

  • Warr, G. W.; Decker, J. M.; Mandel, D. D., et al. Lymphocyte-like cells from the tunicatePyura stolonifera: binding of lectins, morphological and functional studies. Aust. J. Exp. Biol. Med. Sci. 55:151–164; 1977.

    PubMed  CAS  Google Scholar 

  • Wright, R. K. Urochordates. In: Ratcliffe, N. A.; Rowley, A. F., eds. Invertebrate blood cells, vol. 2. London: Academic Press; 1981:565–625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinkevich, B., Rabinowitz, C. In vitro culture of blood cells from the colonial protochordateBotryllus schlosseri . In Vitro Cell Dev Biol - Animal 29, 79–85 (1993). https://doi.org/10.1007/BF02634375

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634375

Key words

Navigation