Skip to main content
Log in

Interstitial cells from the atrial and ventricular sides of the bovine mitral valve respond differently to denuding endocardial injury

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The mitral valve has atrial and ventricular sides, each lined by endocardial cells. The valve stroma contains α smooth muscle actin positive interstitial cells, collagen, glycosaminoglycans, and elastic tissue. To eliminate the effect of endocardium on wound repair in bovine mitral valve organ culture, the endocardium was removed from both sides of the valve. At 6 days, organ cultures of these preparations revealed surface cells on the ventricular side but not on the atrial side. Ventricular surface cells were negative for Factor VIII-related antigen, and positive for α smooth muscle actin. Immuno-peroxidase staining for proliferating cell nuclear antigen/cyclin, a marker for cell proliferation, revealed a positive labeling index of (mean ± standard deviation) 0.08 ± 0.16% for interstitial cells from the atrial side and 0.14 ± 0.19% for ventricular side interstitial cells in uncultured preparations (not significant), and 0.44 ± 0.69% for atrial side interstitial cells and 2.25 ± 1.64% for ventricular side interstitial cells in the cultured preparations (significant,P<0.0006). The results suggest that in organ culture, interstitial cells from the ventricular side of the mitral valve respond to a denuding endocardial injury by proliferating and migrating onto the adjacent surface whereas interstitial cells from the atrial side do not. This difference in the response to injury of interstitial cells from the atrial and ventricular sides of the valve may reflect differences in phenotype or may be due to effects of extracellular matrix on interstitial cell behavior. The latter is possible because of differences in the extracellular matrix of the atrial and ventricular sides of the valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aumailley, M.; Timpl, R. Attachment of cells to basement membrane collagen type IV. J. Cell Biol. 103:1569–1575; 1986.

    Article  PubMed  CAS  Google Scholar 

  2. Bashey, R. I.; Torri, S.; Angrist, A. Age-related collagen and elastin content of human heart valves. J. Gerontol. 22:203–208; 1967.

    PubMed  CAS  Google Scholar 

  3. Bissell, M. J.; Barcellos-Hoff, M. H. The influence of extracellular matrix on gene expression: is structure the message? J. Cell Sci. Suppl. 8:327–343; 1987.

    PubMed  CAS  Google Scholar 

  4. Campbell, J. H.; Campbell, G. R. Endothelial cell influences on vascular smooth muscle phenotype. Ann. Rev. Physiol. 48:295–306; 1986.

    Article  CAS  Google Scholar 

  5. Carpentier, A. Cardiac valve surgery—the “French correction.” J. Thorac. Cardiovasc. Surg. 86:323–337; 1983.

    PubMed  CAS  Google Scholar 

  6. Celis, J. E.; Celis, A. Cell cycle dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells: subdivision of S phase. Proc. Natl. Acad. Sci. USA 82:3262–3266; 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Darby, I.; Skalli, O.; Gabbiani, G. α Smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab. Invest. 63:21–29; 1990.

    PubMed  CAS  Google Scholar 

  8. Filip, D. A.; Radu, A.; Simionescu, M. Interstitial cells of the heart valves possess characteristics similar to smooth muscle cells. Circ. Res. 59:310–320; 1986.

    PubMed  CAS  Google Scholar 

  9. Galloway, A. C.; Colvin, S. B.; Baumann, F. G., et al. Long-term results of mitral valve reconstruction with Carpentier techniques in 148 patients with mitral insufficiency. Circ. Suppl. 78:97–105; 1988.

    Google Scholar 

  10. Garcia, R. L.; Coltrera, M. D.; Gown, A. M. Analysis of proliferative grade using anti PCNA/cyclin monoclonal antibodies in fixed, embedded tissues. Comparison with flow cytometric analysis. Am. J. Pathol. 134:733–739; 1989.

    PubMed  CAS  Google Scholar 

  11. Gordon, D.; Reidy, M. A.; Benditt, E. P., et al. Cell proliferation in human coronary arteries. Proc. Natl. Acad. Sci. USA 87:4600–4604; 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Hall, P. A.; Levison, D. A.; Woods, A. L., et al. Proliferating cell nuclear antigen (PCNA) immunolocalization in paraffin sections: an index of cell proliferation with evidence of deregulated expression in some neoplasms. J. Pathol. 162:285–294; 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Hsu, S-M.; Soban, E. Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immuno-histochemistry. J. Histochem. Cytochem. 30:1079–1082; 1982.

    PubMed  CAS  Google Scholar 

  14. Johnson, C. M.; Hanson, M. N.; Helgeson, S. C. Porcine cardiac valvular subendothelial cells in culture: cell isolation and growth characteristics. J. Mol. Cell. Cardiol. 19:1185–1193; 1987.

    Article  PubMed  CAS  Google Scholar 

  15. Koo, E. W. Y.; Gotlieb, A. I. Endothelial stimulation of intimal cell proliferation in a porcine aortic organ culture. Am. J. Pathol. 134:497–503; 1989.

    PubMed  CAS  Google Scholar 

  16. Lawley, T. J.; Kubota, Y. Induction of morphologic differentiation of endothelial cells in culture. J. Invest. Dermatol. 93:59S-61S; 1989.

    Article  PubMed  CAS  Google Scholar 

  17. Lester, W. M.; Rosenthal, A.; Granton, B., et al. Porcine mitral valve interstitial cells in culture. Lab. Invest. 59:710–719; 1988.

    PubMed  CAS  Google Scholar 

  18. Lester, W. M.; Damjii, A. A.; Tanaka, M., et al. Bovine mitral valve organ culture: role of interstitial cells in repair of valvular injury. J. Mol. Cell. Cardiol. 24:43–53; 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Lester, W. M.; Gotlieb, A. I. In vitro repair of the wounded porcine mitral valve. Circ. Res. 62:833–845; 1988.

    PubMed  CAS  Google Scholar 

  20. Lis, Y.; Burleigh, M. C.; Parker, D. J., et al. Biochemical characterization of individual normal, floppy, and rheumatic human mitral valves. Biochem. J. 244:597–603; 1987.

    PubMed  CAS  Google Scholar 

  21. Madri, J. A.; Pratt, B. M.; Yannariello-Brown, J. Matrix-driven cell size change modulates aortic endothelial proliferation and sheet migration. Am. J. Pathol. 132:18–27; 1988.

    PubMed  CAS  Google Scholar 

  22. Manduteanu, I.; Popov, D.; Radu, A., et al. Calf cardiac valvular endocardial cells in culture: production of glycosaminoglycans, prostacyclin, and fibronectin. J. Mol. Cell. Cardiol. 20:103–118; 1988.

    Article  PubMed  CAS  Google Scholar 

  23. McGuire, P. G.; Orkin, R. W. Isolation of rat aortic endothelial cells by primary explant techniques and their phenotype modulation by defined substrata. Lab. Invest. 57:94–105; 1987.

    PubMed  CAS  Google Scholar 

  24. Movat, H. Z. Demonstration of all connective tissue elements in a single section. Arch. Pathol. 60:289–295; 1955.

    CAS  Google Scholar 

  25. Nurse, P. Universal control mechanism regulating onset of M phase. Nature 344:503–508; 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Ogata, K.; Kurki, P.; Celis, J. E., et al. Monoclonal antibodies to a nuclear protein (PCNA/cyclin) associated with DNA replication. Exp. Cell Res. 168:476–486; 1987.

    Article  Google Scholar 

  27. Ooyama, T.; Fukuda, K.; Oda, H., et al. Substratum-bound elastin peptide inhibits aortic smooth muscle cell migration in vitro. Arteriosclerosis 7:593–598; 1987.

    PubMed  CAS  Google Scholar 

  28. Orlidge, A.; D’Amore, P. A. Cell specific effects of glycosaminoglycans on the attachment and proliferation of vascular wall components. Microvasc. Res. 31:41–53; 1986.

    Article  PubMed  CAS  Google Scholar 

  29. Papadopoulos, T.; Ionescu, L.; Dammrich, J., et al. Type I and type IV collagen promote adherence and spreading of human type II pneumocytes in vitro. Lab. Invest. 62:562–569; 1990.

    PubMed  CAS  Google Scholar 

  30. Ross, E. M.; Roberts, W. C. The carcinoid syndrome: comparison of 21 necropsy subjects with carcinoid heart disease to 15 necropsy subjects without carcinoid heart disease. Am. J. Med. 79:339–354; 1985.

    Article  PubMed  CAS  Google Scholar 

  31. Ryan, G. B.; Cliff, W. J.; Gabbiani, G., et al. Myofibroblasts in human granulation tissue. Hum. Pathol. 5:55–67; 1974.

    Article  PubMed  CAS  Google Scholar 

  32. Sarphie, T. G. Surface topography of mitral valve endothelium from diet-induced hypercholesterolemic rabbits. Atherosclerosis 45:203–220; 1982.

    Article  PubMed  CAS  Google Scholar 

  33. Sehested, M.; Hou-Jensen, K. Factor VIII-related antigen as an endothelial cell marker in benign and malignant diseases. Virchows Arch. (Pathol. Anat.) 391:217–225; 1981.

    Article  CAS  Google Scholar 

  34. Senior, R. M.; Griffin, G. L.; Mecham, R. P. Chemotactic responses of fibroblasts to tropoelastin and elastin-derived peptides. J. Clin. Invest. 70:614–618; 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Senior, R. M.; Griffin, G. L.; Mecham, R. P., et al. Val-Gly-Val-Ala-Pro-Gly, a repeating peptide in elastin, is chemotactic for fibroblasts and monocytes. J. Cell Biol. 99:870–874; 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Silver, M. D. Obstruction of blood flow related to tricuspid, pulmonary, and mitral valves. In: Silver, M. D., ed Cardiovascular pathology. New York: Churchill Livingstone Inc.; 1983:561–568.

    Google Scholar 

  37. Silver, M. M. Gross examination and structure of the heart. In: Silver, M. D., ed. Cardiovascular pathology. New York: Churchill Livingstone Inc.; 1983:24–25.

    Google Scholar 

  38. Skalli, O.; Ropraz, P.; Trzeciak, A., et al. A monoclonal antibody against α smooth muscle actin: a new probe for smooth muscle differentiation. J. Cell Biol. 103:2787–2796; 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Spencer, F. C.; Colvin, S. B.; Culliford, A. T., et al. Experiences with the Carpentier techniques of mitral valve reconstruction in 103 patients (1980–1985). J. Thorac. Cardiovasc. Surg. 90:341–350; 1985.

    PubMed  CAS  Google Scholar 

  40. Torii, S.; Bashey, R. I.; Nakao, K. Acid mucopolysaccharide composition of human heart valve. Biochem. Biophys. Acta 101:285–291; 1965.

    PubMed  CAS  Google Scholar 

  41. Waseem, N. H.; Lane, D. P. Monoclonal antibody analysis of the proliferating cell nuclear antigen (PCNA). Structural conservation and the detection of a nucleolar form. J. Cell Sci. 96:121–129; 1990.

    PubMed  CAS  Google Scholar 

  42. Zacks, S.; Rosenthal, A.; Granton, B., et al. Characterization of cobblestone mitral valve interstitial cells. Arch. Pathol. Lab. Med. 115:774–779; 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lester, W.M., Damji, A.A., Gedeon, I. et al. Interstitial cells from the atrial and ventricular sides of the bovine mitral valve respond differently to denuding endocardial injury. In Vitro Cell Dev Biol - Animal 29, 41–50 (1993). https://doi.org/10.1007/BF02634370

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634370

Key words

Navigation