Skip to main content
Log in

Organ-specific change inDolichos biflorus lectin binding by myocardial endothelial cells during in vitro cultivation

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Endothelial cells of the NMRI mouse strain express a cell surface glycoprotein recognized by the lectinDolichos biflorus agglutinin (DBA). This study documents a marked organ-specific increase in DBA-specific lectin binding of myocardium-derived endothelial cells (MEC) of the NMRI/GSF mouse during in vitro cultivation. An up to 20-fold increase in DBA binding sites is observed in long-term culture, an increase not found in other NMRI-derived endothelial cell lines (e.g., brain, aorta). The increase appears restricted to DBA in that binding with other lectins (PNA, WGA) was unaltered. NMRI MEC cultures maintain typical endothelial cell attributes such as cobblestone morphology on confluence, expression of endothelial cell-specific surface markers, and production of angiotensin-converting enzyme. Cultures routinely become aneuploid within 4 passages, several passages before upregulation of the DBA binding site(s). Myocardial endothelial cells sorted to obtain DBAhi and DBAlo cell populations generally maintained their sorted phenotype for 3 to 4 passages. Limiting dilution cloning resulted in clones varying in DBA expression. Clones for DBAhi expression maintained their DBA affinity for at least 10 passages (>30 doublings), whereas DBAlo clones gave rise to varying numbers of DBAhi cells within 2 to 4 passages. We hypothesize that the change in DBA affinity accompanies in vitro aging, that the change is independent of alterations in karyotype, and that the increase in DBA affinity may reflect a change in one or more other endothelial cell properties. Additional studies will be necessary to determine whether the in vitro changes are correlated with specific functional alterations and whether they accurately reflect progressive changes of MEC in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arita, Y.; Ogata, S-I.; Ozawa, M., et al. Distinct properties of receptors forDolichos biflorus agglutinin (DBA) isolated from small intestine of adult mice and endoderm cells of early embryos and teratocarcinomas. Differentiation 28:254–259; 1985.

    Article  PubMed  CAS  Google Scholar 

  2. Auerbach, R.; Alby, L.; Grieves, J., et al. A monoclonal antibody against angiotensin-converting enzyme: its use as a marker for murine, bovine, and human endothelial cells. Proc. Natl. Acad. Sci. USA 79:7891–7895; 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Auerbach, R. Endothelial cell heterogeneity: its role as a determinant of selective metastasis. In: Simionescu, N.; Simionescu, O., eds. Endothelial cell dysfunction. New York: Plenum Press; 1992:427–437.

    Google Scholar 

  4. Auerbach, R. Vascular endothelial cell differentiation: organ-specificity and selective affinities as the basis for developing anti-cancer strategies. Int. J. Radiat. Biol. 60:1–10; 1991.

    PubMed  CAS  Google Scholar 

  5. Auerbach, R.; Alby, L.; Morrisey, L. W., et al. Expression of organ-specific antigens on capillary endothelial cells. Microvasc. Res. 29:401–411; 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Augustin-Voss, H. G.; Johnson, R. C.; Pauli, B. U. Modulation of endothelial cell surface glycoconjugate expression by organ-derived biomatrices. Exp. Cell Res. 192:346–351; 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Becker, R. C. Seminars in thrombosis, thrombolysis and vascular biology. 1. The vascular endothelium. Cardiology 78:13–22; 1991.

    PubMed  CAS  Google Scholar 

  8. Belloni, P. N.; Nicolson, G. L. Differential expression of cell surface glycoproteins on various organ-derived microvascular endothelia and endothelial cell cultures. J. Cell. Physiol. 136:398–410; 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Blood, C. H.; Zetter, B. R. Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochim. Biophys. Acta 1032:89–118; 1990.

    PubMed  CAS  Google Scholar 

  10. Busse, S. C.; Mann, P. L.; Griffey, R. H. Senescence-induced alteration in cell surface carbohydrates correlated using proton NMR spectroscopy and a lectin-based affinity-binding assay. Biochim. Biophys. Acta 984:183–187; 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Chung-Welch, N.; Patton, W. F.; Yen-Patton, G. P. A., et al. Phenotypic comparison between mesothelial and microvascular endothelial cell lineages using conventional endothelial cell markers, cytoskeletal protein markers and in vitro assays of angiogenic potential. Differentiation 42:44–53; 1989.

    Article  PubMed  CAS  Google Scholar 

  12. Darr, D.; McCormack, K. M.; Manning, T., et al. Comparison ofDolichos biflorus lectin and other lectin-horseradish peroxidase conjugates in staining of cutaneous blood vessels in the hairless mini-pig. J. Cutaneous Pathol. 17:9–15; 1990.

    Article  CAS  Google Scholar 

  13. Diglio, C. A.; Grammas, P.; Giacomelli, F., et al. Rat heart-derived endothelial and smooth muscle cell cultures: isolation, cloning and characterization. Tissue & Cell 20:477–492; 1988.

    Article  CAS  Google Scholar 

  14. Ewart, J. L.; Auerbach, R. Defects in thymocyte differentiation and thymocyte-stromal interactions in the trisomy 16 mouse. Dev. Immunol. 2:215–226; 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Fazel, A. R.; Sumida, H.; Schulte, B. A., et al. Lectin histochemistry of the embryonic heart: fucose-specific lectin binding sites in developing rats and chicks. Am. J. Anat. 184:76–84; 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Fujimoto, T.; Singer, S. J. Immunocytochemical studies of endothelial cells in vivo. II. Chicken aortic and capillary endothelial cells exhibit different cell surface distributions of the integrin complex. J. Histochem. Cytochem. 36:1309–1317; 1988.

    PubMed  CAS  Google Scholar 

  17. Gros, D.; Bruce, B.; Kieda, C., et al. Evolution of the surface of mouse myocardial cells during ontogenesis. II. Changes of fluorescent lectin-binding sites. J. Mol. Cell. Cardiol. 15:93–104; 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Gumkowski, F.; Kaminska, G.; Kaminski, M., et al. Heterogeneity of mouse vascular endothelium. In vitro studies of lymphatic, large blood vessel and microvascular endothelial cells. Blood Vessels 24:11–23; 1987.

    PubMed  CAS  Google Scholar 

  19. Hasegawa, N.; Yamamoto, M.; Imamura, T., et al., Evaluation of long-term cultured endothelial cells as a model system for studying vascular ageing. Mech. Ageing Dev. 46:111–123; 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Hoffman, S.; Crossin, K. L.; Prediger, E. A., et al. Expression and function of cell adhesion during the early development of the heart. Ann. NY Acad. Sci. 588:73–86; 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Hogan, B. F.; Constantini, F.; Lacy, E. Manipulating the mouse embryo: a laboratory text. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1986.

    Google Scholar 

  22. Holthoefer, H.; Virtanen, I.; Kariniemi, A-L., et al.Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab. Invest. 47:60–66; 1982.

    Google Scholar 

  23. Howard, P. S.; Myers, J. C.; Gorfien, S. F., et al. Progressive modulation of endothelial phenotype duringin vitro blood vessel formation. Dev. Biol. 146:325–338; 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson, C. M.; Helgeson, S. C. Glycoproteins synthesized by cultured cardiac valve endothelial cells: unique absence of fibronectin production. Biochem. Biophys. Res. Comm. 153:46–50; 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Kamada, Y.; Muramatsu, H.; Arita, Y., et al. Structural studies on a binding site forDolichos biflorus agglutinin in the small intestine of the mouse. J. Biochem. 109:178–183; 1991.

    PubMed  CAS  Google Scholar 

  26. Key, B.; Akeson, R. A. Delineation of olfactory pathways in the frog nervous system by unique glycoconjugates and N-CAM glycoforms. Neuron 6:381–396; 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Laitinen, L.; Hormia, M.; Virtanen, I.Psophocarpus tetragonolobus agglutinin reveals N-acetylgalactosaminyl residues confined to endothelial cells and some epithelial cells in human tissues. J. Histochem. Cytochem. 38:875–884; 1990.

    PubMed  CAS  Google Scholar 

  28. Leathem, A.; Atkins, N. Lectin binding to formalin-fixed paraffin sections. J. Clin. Pathol. 36:747–750; 1983.

    PubMed  CAS  Google Scholar 

  29. Obeso, J.; Weber, J.; Auerbach, R. A hemangioendothelioma-derived cell line: its use as a model for the study of endothelial cell biology. Lab. Invest. 63:259–269; 1990.

    PubMed  CAS  Google Scholar 

  30. Pauli, B. U.; Lee, C-L. Organ preference of metastasis. The role of organ-specifically modulated endothelial cells. Lab. Invest. 58:379–387; 1988.

    PubMed  CAS  Google Scholar 

  31. Plendl, J.; Schmahl, W. Binding ofDolichos biflorus agglutinin (DBA) to endothelial cells during the embryonal period is restricted to the NMRI-mouse. In: Bog-Hansen, T. C.; van Driessche, E., eds. Lectins, vol V. Berlin, New York: Walter de Gruyter & Co.; 1988.

    Google Scholar 

  32. Plendl, J.; Schoenleber, B.; Schmahl, W., et al. Sexual dimorphism of the kidney in the NMRI mouse as shown byDolichos biflorus agglutinin labelling. Anat. Hist. Embryol. 21:118–127; 1992.

    CAS  Google Scholar 

  33. Ponder, B. A. J.; Wilkinson, M. M. Organ-related differences in binding ofDolichos biflorus agglutinin to vascular endothelium. Dev. Biol. 96:535–541; 1983.

    Article  PubMed  CAS  Google Scholar 

  34. Ponder, B. A. J.; Festing, M. F. W.; Wilkinson, M. M. An allelic difference determines reciprocal patterns of expression of binding sites forDolichos biflorus lectin in inbred strains of mice. J. Embryol. Exp. Morphol. 87:229–239; 1985.

    PubMed  CAS  Google Scholar 

  35. Porter, G. A.; Palade, G. E.; Milici, A. J. Differential binding of the lectinsGriffonia simplicifolia I andLycopersicon esculentum to microvascular endothelium: organ-specific localization and partial glycoprotein characterization. Eur. J. Cell Biol. 51:85–95; 1990.

    PubMed  CAS  Google Scholar 

  36. Rone, J. D.; Goodman, A. L. Heterogeneity of rabbit aortic endothelial cells in primary culture. Proc. Soc. Exp. Biol. Med. 184:495–503; 1987.

    PubMed  CAS  Google Scholar 

  37. Ryan, U., editor. Endothelial cells, vols 1–3. Boca Raton, FL: CRC Press; 1989.

    Google Scholar 

  38. Schnitzer, E.; Shen, C-P. J.; Palade, G. E. Lectin analysis of common glycoproteins detected on the surface of continuous microvascular endothelium in situ and in culture: identification of sialoglycoproteins. Eur. J. Cell Biol. 52:241–251; 1990.

    PubMed  CAS  Google Scholar 

  39. Schoenleber, B.Dolichos Biflorus Lektin-Affinität und Sialisierungsgrad als Kennzeichen für Organdifferenzierungsvorgänge während der Normalentwicklung. Eine histochemische Studie an der NMRI-Maus. Germany: Univ. München; 1987. Dissertation.

    Google Scholar 

  40. Shimada, Y.; Kaji, K.; Ito, H., et al. Growth-inhibiting effect of tumor necrosis factor on human umbilical vein endothelial cells is enhanced with advancing age in vitro. J. Cell. Physiol. 142:31–38; 1990.

    Article  PubMed  CAS  Google Scholar 

  41. Simionescu, N.; Simionescu, M., eds. Endothelial cell dysfunction. New York: Plenum Press; 1992.

    Google Scholar 

  42. Simionescu, M.; Simionescu, N.; Santoro, F., et al. Differentiated microdomains of the luminal plasmalemma of murine capillaries: segmental variations in young and old animals. J. Cell Biol. 100:1396–1407; 1985.

    Article  PubMed  CAS  Google Scholar 

  43. Sobis, H.; Vandeputte, M. Reactivity of visceral yolk sac endoderm with lectins: changes related to age and species. Tumor Biol. 10:133–139; 1989.

    Article  CAS  Google Scholar 

  44. Stolz, D. B.; Jacobson, B. S. Macro- and microvascular endothelial cells in vitro: maintenance of biochemical heterogeneity despite loss of ultrastructural characteristics. In Vitro Cell. Dev. Biol. 27A:169–182; 1991.

    Article  PubMed  CAS  Google Scholar 

  45. Takahashi, K.; Sawasaki, Y.; Hata, J-I., et al. Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell. Dev. Biol. 25:265–274; 1990.

    Google Scholar 

  46. Tienari, J.; Virtanen, I.; Lehtonen, E. Lectin binding of F9 embryonal carcinoma cells: evidence for population heterogeneity and developmentally regulated high-M, cell surface proteins. J. Cell Sci. 92:561–568; 1989.

    PubMed  CAS  Google Scholar 

  47. Tokunaga, O.; Yamada, T.; Fan, J., et al. Age-related decline in prostacyclin synthesis by human aortic endothelial cells. Am. J. Pathol. 138:941–949; 1991.

    PubMed  CAS  Google Scholar 

  48. Wehrmacher, W. H. Endothelium: from whence to whither. Semin. Thromb. Hemostasis 14(Suppl):1–11; 1988.

    Google Scholar 

  49. Williams, R. J.; Robertson, D.; Davies, A. J. S. Identification of vascular endothelial cells in murine omentum using the lectin,Dolichos biflorus agglutinin: possible applications in the study of angiogenesis. Histochem. J. 21:271–278; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plendl, J., Hartwell, L. & Auerbach, R. Organ-specific change inDolichos biflorus lectin binding by myocardial endothelial cells during in vitro cultivation. In Vitro Cell Dev Biol - Animal 29, 25–31 (1993). https://doi.org/10.1007/BF02634368

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634368

Key words

Navigation