Skip to main content
Log in

Expression of differentiation markers in human adult keratinocytes cultured in submerged conditions

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A number of studies have shown that human keratinocytes cultured in submerged conditions with non-delipidized serum do not express the major differentiation markers, i.e. 67 kDa keratin, ceramides, and lanosterol. However, they were mostly performed with neonatal or juvenile keratinocytes after a few passages, and not all the markers were analyzed in parallel. In this study, we compared the expression of several differentiation markers in preconfluent and postconfluent adult breast keratinocytes in primary and secondary cultures before and after cryopreservation. When primary cultures reached confluence, the 67 kDa keratin was synthesized, transglutaminase activity was increased, and, although overall lipid synthesis dropped, both lanosterol and free fatty acids contents were augmented. The same pattern was observed in postconfluent subcultures at Passage 2; however decreased overall lipid synthesis was more pronounced. Cryopreservation of keratinocytes just after isolation or after a few days in culture did not result in the loss of expression of these specific epidermic markers. Thus, adult breast keratinocytes in postconfluent submerged cultures represent an in vitro model that possesses various features of the normal epidermis, even after cryopreservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bligh, E. G.; Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911–917; 1959.

    PubMed  CAS  Google Scholar 

  2. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  3. Brod, J.; Bavelier, E.; Justine, P., et al. Acylceramides and lanosterollipid markers of terminal differentiation in cultured human keratinocytes: modulating effect of retinoic acid. In Vitro Cell. Dev. Biol. 27:163–168; 1991.

    Google Scholar 

  4. Chandrakasan, G.; Hwang, C. B. C.; Ryder, M., et al. Keratin expression in cultures of adult human epidermal cells. Cell. Mol. Biol. 37:847–852; 1991.

    PubMed  CAS  Google Scholar 

  5. Chesné, C.; Guilouzo, A. Cryopreservation of isolated rat hepatocytes: a critical evaluation of freezing and thawing conditions. Cryobiology 25:323–330; 1988.

    Article  PubMed  Google Scholar 

  6. Chesné, C.; Gripon, P.; Guillouzo, A. Primary culture of cryopreserved rat hepatocytes. In: Guillouzo, A., ed. Liver cells and drugs. Paris: Les Editions INSERM/John Libbey; 1988:343–350.

    Google Scholar 

  7. De Luca, M.; Albanese, E.; Bondanza, S., et al. Multicentre experience in the treatment of burns with autologous and allogenic cultured epithelium, fresh or preserved in a frozen state. Burns 15:303–309; 1989.

    Article  PubMed  Google Scholar 

  8. Eichner, R.; Bonitz, P.; Sun, T. T. Classification of epidermal keratins according to their immunoreactivity, isoelectric point, and mode of expression. J. Cell Biol. 98:1388–1396; 1984.

    Article  PubMed  CAS  Google Scholar 

  9. Elias, P. M. Epidermal lipids, barrier function and desquamation. J. Invest. Dermatol. 80:44s-49s; 1983.

    Article  PubMed  Google Scholar 

  10. Fleckman, P.; Dale, B. A.; Holbrook, K. A. Profilaggrin, a high molecular-weight precursor of filaggrin in human epidermis and cultured keratinocytes. J. Invest. Dermatol. 85:507–512; 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Fuchs, E.; Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19:1033–1042; 1980.

    Article  PubMed  CAS  Google Scholar 

  12. Fuchs, E.; Green, H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25:617–625; 1981.

    Article  PubMed  CAS  Google Scholar 

  13. Grubauer, G.; Feingold, K. R.; Harris, R. M., et al. Lipid content and lipid type as determinants of the epidermal permeability barrier. J. Lipid Res. 30:89–96; 1989.

    PubMed  CAS  Google Scholar 

  14. Hennings, H.; Steinert, P.; Buxman, M. M. Calcium induction of transglutaminase and the formation ofε(γ-glutamyl)lysine cross links in cultured mouse epidermal cells. Biochem. Biophys. Res. Commun. 102:739–745; 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Kearney, J. N. Cryopreservation of cultured skin cells. Burns 17:380–383; 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Kopan, R.; Traska, G.; Fuchs, E. Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J. Cell Biol. 105:427–440; 1987.

    Article  PubMed  CAS  Google Scholar 

  17. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685; 1970.

    Article  Google Scholar 

  18. Lampe, M. A.; Gurlingame, A. L.; Whitney, J., et al. Human stratum lipids: characterization and regional variations. J. Lipid Res. 24:121–130; 1983.

    Google Scholar 

  19. Lampe, M. A.; Williams, M. L.; Elias, P. M. Human epidermal lipids: characterization and modulations during differentiation. J. Lipid Res. 24:131–140; 1983.

    PubMed  CAS  Google Scholar 

  20. Lichti, U.; Ben, T.; Yuspa, S. H. Retinoic acid-induced transglutaminase in mouse epidermal cells is distinct from epidermal transglutaminase. J. Biol. Chem. 260:1422–1426; 1985.

    PubMed  CAS  Google Scholar 

  21. Madison, K. C.; Wertz, P. W.; Strauss, J. S., et al. Lipid composition of cultured murine keratinocytes. J. Invest. Dermatol. 87:253–259; 1986.

    Article  PubMed  CAS  Google Scholar 

  22. May, S. R.; Rudis, S. K.; Rubin, C. A. Optimum cooling and warming rates for the cryopreservation of cultured human keratinocytes and mouse L cells. Cryobiology 25:516; 1988.

    Article  Google Scholar 

  23. Mehrel, T.; Hohl, D.; Rothnagel, J. A., et al. Identification of a major keratinocyte cell envelope protein, loricrin. Cell 61:1103–1112; 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Michel, S.; Démarchez, M. Localization and in vivo activity of epidermal transglutaminase. J. Invest. Dermatol. 90:472–474; 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Oliver, A. M. The cytokeratin expression of cultured human foetal keratinocytes. Br. J. Dermatol. 123:707–716; 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Park, S. C.; Kim, S. Y., Kim, H. C., et al. Differential expression of transglutaminases in human foreskin and cultured keratinocytes. J. Cell Biol. 107:139a; 1988.

    Google Scholar 

  27. Ponec, M.; Weerheim, A.; Kempenaar, J., et al. Lipid composition of cultured human keratinocytes in relation to their differentiation. J. Lipid Res. 29:949–961; 1988.

    PubMed  CAS  Google Scholar 

  28. Ponec, M.; Kempenaar, J.; Boonstra, J. Regulation of lipid synthesis in relation to keratinocyte differentiation capacity. Biochem. Biophys. Acta 921:512–521; 1987.

    PubMed  CAS  Google Scholar 

  29. Pruniéras, M. Differenciation de l’épiderme en culture: application en pharmacologie. In: Adolphe, M.; Guillouzo, A., eds. Méthodes in vitro en pharmaco-toxicologie. Paris: Les Editions INSERM; 1988:67–76.

    Google Scholar 

  30. Régnier, M.; Darmon, M. Human epidermis reconstructed in vitro: a model to study keratinocyte differentiation and its modulation by retinoic acid. In Vitro Cell. Dev. Biol. 25:1000–1008; 1989.

    Article  PubMed  Google Scholar 

  31. Reichert, U.; Michel, S.; Schmidt, R. The cornified envelope: a key structure of terminally differentiating keratinocytes. In: Molecular biology of the skin: the keratinocyte. Orlando: Academic Press; 1993:107–150.

    Google Scholar 

  32. Rheinwald, J. G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344; 1975.

    Article  PubMed  CAS  Google Scholar 

  33. Rice, R. H.; Green, H. Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell 18:681–694; 1979.

    Article  PubMed  CAS  Google Scholar 

  34. Rice, R. H.; Green, H. The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked protein. Cell 11:417–422; 1977.

    Article  PubMed  CAS  Google Scholar 

  35. Rubin, A. L.; Rice, R. H. Differential regulation by retinoic acid and calcium of transglutaminases in cultured neoplastic and normal human keratinocytes. Cancer Res. 46:2356–2361; 1986.

    PubMed  CAS  Google Scholar 

  36. Schmidt, R.; Michel, S.; Shroot, B., et al. Transglutaminases in normal and transformed human keratinocytes in culture. J. Invest. Dermatol. 90:475–479; 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Simon, M.; Green, H. Enzymatic cross-linking of involucrin and other proteins by keratinocyte particulates in vitro. Cell 40:677–683; 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Takahashi, M.; Tezuka, T.; Katunuma, N. Phosphorylated cystatin a is a natural substrate of epidermal transglutaminase for formation of skin cornified envelope. FEBS Lett. 308:79–82; 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Teepe, R. G. C.; Koebrugge, E. J.; Ponec, M., et al. Fresh versus cryopreserved cultured allografts for the treatment of chronic skin ulcers. Br. J. Dermatol. 122:81–89; 1990.

    Article  PubMed  CAS  Google Scholar 

  40. Thacher, S. M.; Rice, R. H. Keratinocyte-specific transglutaminase of cultured human epidermal cells: relation to cross-linked envelope formation and terminal differentiation. Cell 40:685–695; 1985.

    Article  PubMed  CAS  Google Scholar 

  41. Thacher, S. M. Purification of keratinocyte transglutaminase and its expression during squamous differentiation. J. Invest. Dermatol. 89:578–584; 1989.

    Google Scholar 

  42. Towbin, H.; Staehlin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354; 1979.

    Article  PubMed  CAS  Google Scholar 

  43. Vaughan, F. L.; Kass, L. L.; Uzman, J. A. Requirement of hydrocortisone and insulin for extended proliferation and passage of rat keratinocytes. In Vitro Cell. Dev. Biol. 11:941–946; 1981.

    Google Scholar 

  44. Williams, M. L.; Brown, B. E.; Monger, D. J., et al. Lipid content and metabolism of human keratinocyte cultures grown at the air-medium interface. J. Cell. Physiol. 136:103–110; 1988.

    Article  PubMed  CAS  Google Scholar 

  45. Williams, M. L.; Rutherford, S. L.; Ponec, M., et al. Density-dependent variations in the lipid content and metabolism of cultured human keratinocytes. J. Invest. Dermatol. 91:86–91; 1988.

    Article  PubMed  CAS  Google Scholar 

  46. Woodcock-Mitchell, J.; Eichner, R.; Nelson, W. G., et al. Immunolocalization of keratin polypeptides in human epidermis using monoclonal antibodies. J. Cell Biol. 95:580–588; 1982.

    Article  PubMed  CAS  Google Scholar 

  47. Yuspa, S. H.; Ben, T.; Hennings, H., et al. Phorbol ester tumor promotors induce epidermal transglutaminase activity. Biochem. Biophys. Res. Commun. 97:700–708; 1980.

    Article  PubMed  CAS  Google Scholar 

  48. Zuttergren, J. G.; Peterson, L. L.; Wuepper, K. D. Keratolinin: the soluble substrate of epidermal transglutaminase from human and bovine tissue. Proc. Natl. Acad. Sci. USA 81:238–242; 1984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirel, B., Chesné, C., Pailheret, JP. et al. Expression of differentiation markers in human adult keratinocytes cultured in submerged conditions. In Vitro Cell Dev Biol - Animal 30, 372–378 (1994). https://doi.org/10.1007/BF02634357

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634357

Key words

Navigation