Skip to main content
Log in

Extracellular matrix components affect the pattern of protein synthesis of endothelial cells responding to hyperthermia

  • Cellular And Molecular Toxicology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The biosynthetic profile of endothelial cells responding to hyperthermia is altered by extracellular matrix components. The extracellular matrix components influence the quantitative expression of members of the HSP70 family and HSP90. The expression of several HSP70 mRNA species, which are strictly stress inducible, are modulated by extracellular matrix components. Both laminin and collagen type IV decrease the amount of HSP70 protein and mRNA expressed by endothelial cells exposed to hyperthermia relative to control cultures attached to virgin plastic. In contrast, both laminin and collagen type IV increased the amount of HSP90 mRNA constitutively expressed by endothelial cells at 37° C. When endothelial cells were exposed to elevated temperatures, these two extracellular matrix proteins decrease the amount of HSP90 mRNA relative to control cultures attached to virgin plastic. Our observations are consistent with the proposal that the extracellular matrix components regulate gene expression and cell behavior in regard to thermotolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Booyse, F. M.; Sedlak, B. J.; Rafelson, M. E. Culture of arterial endothelial cells: characterization and growth of bovine aortic cells. Thromb. Diath. Haemorrh. 35:825–839; 1975.

    Google Scholar 

  2. Byers, H. R.; Fujiwara, K. Stress fibers in cellsin situ: immunofluorescence visualization of antiactin, antimyosin and anti-alpha-actinin. J. Cell Biol. 93:804–811; 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Catelli, M. G.; Binait, M.; Jung-Testos, I., et al. The common 90 kd protein component of non-transformed 8S steroid receptors is a heat shock protein. EMBO J. 4:3131–3135; 1985.

    PubMed  CAS  Google Scholar 

  4. Chirico, W. J.; Waters, M. G.; Blobel, G. 70 K heat shock related proteins stimulate protein translocation into microsomes. Nature 332:805–810; 1988.

    Article  PubMed  CAS  Google Scholar 

  5. Delvos, U.; Gajdusek, C.; Sage, H., et al. Interaction of vascular wall cells with collagen gels. Lab. Invest. 46:61–72; 1982.

    PubMed  CAS  Google Scholar 

  6. Deshaies, R. J.; Koch, B. D.; Werner-Washburne, M., et al. A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332:800–805; 1988.

    Article  PubMed  CAS  Google Scholar 

  7. Donoviel, D. B.; Framson, P.; Eldridge, C. F., et al. Structural analysis and expression of the human thrombospondin gene promoter. J. Biol. Chem. 263:18590–18593; 1988.

    PubMed  CAS  Google Scholar 

  8. Form, D. M.; Pratt, B. M.; Madri, J. A. Endothelial cell proliferation during angiogenesis: in vitro modulation by basement membrane components. Lab. Invest. 55:521–530; 1986.

    PubMed  CAS  Google Scholar 

  9. Harley, C. B. Hybridization of Oligo(dT) to RNA on nitrocellulose. Gene Anal. Tech. 4:17–22; 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Hynes, R. O. Integrins: a family of cell surface receptors. Cell 48:549–554; 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson, D.; Opperman, H.; Jackson, J., et al. Induction of four proteins in chick embryo cells by sodium arsenite. J. Biol. Chem. 225:6975–6980; 1983.

    Google Scholar 

  12. Johnston, R. N.; Kucey, B. L. Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242:1551–1554; 1988.

    Article  PubMed  CAS  Google Scholar 

  13. Keller, R.; Pratt, B. M.; Furthmeyer, H., et al. Aortic endothelial cell proteoheparan sulfate II. Modulation by extracellular matrix. Am. J. Pathol. 128:299–306; 1987.

    PubMed  CAS  Google Scholar 

  14. Ketis, N. V.; Karnovsky, M. J. Heat-shock response as a possible model for (patho)physiological stress in endothelial cells. In: Simionescu, N.; Simionescu, M., eds. Endothelial cell biology. New York: Plenum Press; 1988:309–334.

    Google Scholar 

  15. Ketis, N. V.; Lawler, J.; Hoover, R. L., et al. Effect of heat shock on the expression of thrombospondin by endothelial cells in culture. J. Cell Biol. 106:893–904; 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Ketis, N. V.; Lawler, J.; Karnovsky, M. J. J. Heat shock stimulates the expression of thrombospondin by endothelial cells in culture. Cell Biol. Suppl. 12D 36:261; 1988.

    Google Scholar 

  17. Ketis, N. V.; Lawler, J.; Karnovsky, M. J. The expression of thrombospondin by endothelial cells in culture is stimulated by hyperthermia. CFBS (Can. Fed. Biol. Sciences) 581:151; 1989.

    Google Scholar 

  18. Ketis, N. V.; Hoover, R. L.; Karnovsky, M. J. Effects of hyperthermia on cell survival and patterns of protein synthesis in endothelial cells from different origins. Cancer Res. 48:2101–2106; 1988.

    PubMed  CAS  Google Scholar 

  19. Kocher, O.; Madri, J. A. Modulation of actin mRNAs in cultured vascular cell by matrix components and TGF-β1. In Vitro Cell. Dev. Biol. 25:424–434; 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  21. Lawler, J.; Weinstein, R.; Hynes, R. O. Cell attachment to thrombospondin: the role of Arg-Gly-Asp, calcium and integrin receptors. J. Cell Biol. 107:2351–2361; 1988.

    Article  PubMed  CAS  Google Scholar 

  22. Levinson, W.; Opperman, H.; Jackson, J. Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochem. Biophys. Acta 606:170–180; 1980.

    PubMed  CAS  Google Scholar 

  23. Li, G. C.; Hahn, G. M. Ethanol-induced tolerance to heat and adriamycin. Nature 274:699–701; 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Maciag, T.; Kadish, J.; Wilkins, L., et al. Organizational behavior of human umbilical vein endothelial cells. J. Cell Biol. 94:511–520; 1982.

    Article  PubMed  CAS  Google Scholar 

  25. Madri, J. A.; Pratt, B. M. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34:85–91; 1986.

    PubMed  CAS  Google Scholar 

  26. Madri, J. A.; Pratt, B. M.; Tucker, A. M. Phenotypic modulation of endothelial cells by transforming growth factor-β depends on composition and organization of extracellular matrix. J. Cell Biol. 106:1375–1384; 1988.

    Article  PubMed  CAS  Google Scholar 

  27. Majack, R. A.; Goodman, L. V.; Dixit, V. M. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J. Cell Biol. 106:415–422; 1988.

    Article  PubMed  CAS  Google Scholar 

  28. Montesano, R.; Orci, L.; Vassali, P. In vitro rapid organization of endothelial cells in capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97:1648–1652; 1983.

    Article  PubMed  CAS  Google Scholar 

  29. Palotie, A.; Tryggvason, K.; Peltonen, L., et al. Components of subendothelial aorta basement membrane: immunohistochemical localization and role in cell attachment. Lab. Invest. 49:362–370; 1983.

    PubMed  CAS  Google Scholar 

  30. Pratt, B. M.; Form, D. M.; Madri, J. A. Endothelial cell-extracellular matrix interactions. In: Fleischmajer, R.; Olsen, B. R.; Kuhn, K., eds. Biology, chemistry and pathology of collagen. New York: New York Academy of Sciences; 1985:274–288.

    Google Scholar 

  31. Roberts, D. D.; Sherwood, J. A.; Ginsberg, V. Platelet thrombospondin mediates attachment and spreading of human melanoma cells. J. Cell Biol. 103:93a; 1986.

    Google Scholar 

  32. Roberts, D. D.; Sherwood, J. A.; Spitalnik, S. L., et al. Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherance. Nature 318:64–66; 1985.

    Article  PubMed  CAS  Google Scholar 

  33. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  34. Sanchez, E. R.; Toft, D. O.; Schlesinger, M. J., et al. Evidence that the 90 KDa phosphoprotein associated with the untransformed glucocorticoid receptor is a murine heat-shock protein. J. Biol. Chem. 260:12398–12401; 1985.

    PubMed  CAS  Google Scholar 

  35. Thornton, S. C.; Mueller, S. M.; Levine, E. M. Human endothelial cells: use of heparan in cloning and long-term serial cultivation. Science 222:623–625; 1983.

    Article  PubMed  CAS  Google Scholar 

  36. Ungewickel, E. The 70-Kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelions from coated vescicles. EMBO J. 4:3385–3391; 1985.

    Google Scholar 

  37. Varani, J.; Dixit, V. M.; Fligiel, S. E., et al. Thrombospondin-induced attachment and spreading of human squamous carcinoma cells. Exp. Cell Res. 167:376–390; 1986.

    Article  PubMed  CAS  Google Scholar 

  38. Zimmerman, L.; Petri, W.; Meselson, M. Accumulation of a specific subset ofD. melanogaster heat shock mRNAs in normal development without heat shock. Cell 32:1161–1170; 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ketis, N.V., Lawler, J. & Bendena, W.G. Extracellular matrix components affect the pattern of protein synthesis of endothelial cells responding to hyperthermia. In Vitro Cell Dev Biol - Animal 29, 768–772 (1993). https://doi.org/10.1007/BF02634343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634343

Key words

Navigation