Skip to main content
Log in

Epithelial cell specific properties and genetic complementation in a ΔF508 cystic fibrosis nasal polyp cell line

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Analysis of vectorial ion transport and protein trafficking in transformed cystic fibrosis (CF) epithelial cells has been limited because the cells tend to lose their tight junctions with multiple subcultures. To elucidate ion transport and protein trafficking in CF epithelial cells, a polar cell line with apical and basolateral compartments will facilitate analysis of the efficacy of different gene therapy strategies in a “tight epithelium”in vitro. This study investigates the genotypic and phenotypic properties of a CF nasal polyp epithelial, ΔF508 homozygote, cell line that has tight junctions pre-crisis. The cells (ΣCFNPE14o-) were transformed with an origin-of-replication defective SV40 plasmid. They develop transepithelial resistance in Ussing chambers and are defective in cAMP-dependent Cl transport as measured by efflux of radioactive Cl, short circuit current (Isc), or whole-cell patch clamp. Stimulation of the cells by bradykinin, histamine, or ATP seems to activate both K+- and Ca+2-dependent Cl transport. Measurement of36Cl efflux following stimulation with A23187 and ionomycin indicate a Ca+2-dependent Cl transport. Volume regulatory capacity of the cells is indicated by cell swelling conductance. Expression of the CF transmembrane conductance regulator mRNA was indicated by RT-PCR amplification. When cells are grown at 26° C for 48 h there is no indication of cAMP-dependent Cl as has been previously indicated in heterologous expression systems. Antibodies specific for secretory cell antigens indicate the presence of antigens found in goblet, serous, and mucous cells; in goblet and serous cells; or in goblet and mucous cells; but not antigens found exclusively in mucous or serous cells. Gene complementation studies with an episomal vector containing wild-type CF transmembrane conductance regulator cDNA showed correction of the cAMP-dependent Cl transport defect. This cell line contributes unique phenotypic features to the store of transformed CF epithelial cells already available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boat, T. F.; Welsh, M. J.; Beaudet, A. L. Cystic fibrosis. In: Scriver, C. R.; Beaudet, A. L.; Sly, W. S., et al., eds. The metabolic basis of inherited disease. San Francisc, CA: McGraw-Hill, Inc.; 1989:2649–2680.

    Google Scholar 

  2. Buchanan, J. A.; Yeger, H.; Tabcharani, J. A., et al. Transformed sweat gland and nasal epithelial cell lines from control and cystic fibrosis individuals. J. Cell Sci. 109–123; 1990.

  3. Cheng, S. H.; Gregory, R. J.; Marshall, J., et al. Defective intracellular processing of CFTR is the molecular basis of most cystic fibrosis. Cell 63:827–834; 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Cozens, A. L.; Yezzi, M. J.; Chin, L., et al. Characterization of immortal cystic fibrosis tracheobronchial gland epithelial cells [published erratum appears in Proc Natl Acad Sci USA 1992 Aug 15;89(16):7849]. Proc. Natl. Acad. Sci. USA 89:5171–5175; 1992.

    Article  PubMed  CAS  Google Scholar 

  5. Cozens, A. L.; Yezzi, M. J.; Kunzelmann, K., et al. CFTR expression and ion transport in polarized immortal human bronchial epithelial cells. Am. J. Respir. Cell. Mol. Biol. 10:38–47; 1994.

    PubMed  CAS  Google Scholar 

  6. Cozens, A. L.; Yezzi, M. J.; Yamaya, M., et al. A transformed human epithelial cell line that retains tight junctions post crisis. In Vitro Cell. Dev. Biol. 28A:735–744; 1992.

    PubMed  CAS  Google Scholar 

  7. Denning, G. M.; Anderson, M. P.; Amara, J. F., et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive [see comments]. Nature 358:761–764; 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Egan, M.; Flotte, T.; Afione, S., et al. Correction of defective PKA regulation of outwardly rectifying chloride channels by insertion of cystic fibrosis transmembrane regulator into CF airway epithelial cells. Nature 358:581–584; 1992.

    Article  PubMed  CAS  Google Scholar 

  9. Ferkol, T.; Kaetzel, C. S.; Davis, P. B. Gene transfer into respiratory epithelial cells by targeting the polymorphic immunoglobulin receptor. J. Clin. Invest. 92:2394–2400; 1993.

    Article  PubMed  CAS  Google Scholar 

  10. Finkbeiner, W. E.; Basbaum, C. B. Monoclonal antibodies directed against human airway secretions. Am. J. Pathol. 131:290–297; 1988.

    PubMed  CAS  Google Scholar 

  11. Flotte, T. R.; Solow, R.; Owens, R. A., et al. Gene expression from adenoassociated virus vectors in airway epithelial cells. Am. J. Respir. Cell. Mol. Biol. 7:349–356; 1992.

    PubMed  CAS  Google Scholar 

  12. Gruenert, D. C. Differentiated properties of human epithelial cells transformed in vitro. Bio Techniques 5:740–749; 1987.

    CAS  Google Scholar 

  13. Gruenert, D. C.; Basbaum, C. B.; Welsh, M. J., et al. Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40. Proc. Natl. Acad. Sci. USA 85:5951–5955; 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Gruenert, D. C.; Yezzi, M. J.; Chin, L., et al. Immortalized cell cultures of CF-tissues as a tool to study ion transport properties. In: Döring, G.; Greger, R.; Kaiser, D., et al., eds. Mukoviszidose 1991:Ergebnisse aus Forschung und Klinik. Hannover: Forschungsgemeinschaft Mukoviszidose mit Kali-Chemie Pharma GmbH; 1991:52–64.

    Google Scholar 

  15. Haensler, J.; Szoka, F. C. Polyamidoamine cascade polymers and their use for efficient transfection of cells in culture. Bioconjugate Chem. 4:85–93; 1993.

    Article  CAS  Google Scholar 

  16. Haws, C.; Krouse, M. E.; Xia, Y., et al. CFTR channels in immortalized human airway cells. Am. J. Physiol. 263:L692-L707; 1992.

    PubMed  CAS  Google Scholar 

  17. Jefferson, D. M.; Valentich, J. D.; Marini, F. C., et al. Expression of normal and cystic fibrosis phenotypes by continuous airway epithelial cell lines. Am. J. Physiol. 259:L496-L505; 1990.

    PubMed  CAS  Google Scholar 

  18. Jetten, A. M.; Yankaskas, J. R.; Stutts, M. J., et al. Persistence of abnormal chloride conductance regulation in transformed cystic fibrosis epithelia. Science 244:1472–1475; 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Kerem, B.; Rommens, J. M.; Buchanan, J. A., et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080; 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Kerem, B. S.; Zielenski, J.; Markiewicz, D., et al. Identification of mutations in regions corresponding to the two putative nucleotide (ATP)-binding folds of the cystic fibrosis gene. Proc. Natl. Acad. Sci. USA 87:8447–8451; 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Koslowsky, T.; Hug, T.; Ecke, D., et al. Ca2+ and swelling-induced activation of ion conductances in bronchial epithelial cells. Pflügers Arch. 428:597–603; 1994.

    Article  PubMed  CAS  Google Scholar 

  22. Kunzelmann, K.; Schwiebert, E. M.; Zeitlin, P. L., et al. An immortalized cystic fibrosis tracheal epithelial cell line homozygous for the delta F508 CFTR mutation. Am. J. Respir. Cell. Mol. Biol. 8:522–529; 1993.

    PubMed  CAS  Google Scholar 

  23. Legendre, J.-Y.; Szoka, F. C. Cyclic amphipathic peptide-DNA complexes mediate high efficiency transfection of adherent mammalian cells. Proc. Natl. Acad. Sci. USA 90:893–897; 1993.

    Article  PubMed  CAS  Google Scholar 

  24. Lei, D. C.; Kunzelmann, K.; Koslowsky, T., et al. Episomal expression of wild-type CFTR corrects cAMP-dependent chloride transport in respiratory epithelial cells. Gene Ther. In press; 1995.

  25. Lukacs, G. L.; Chang, X. B.; Bear, C., et al. The ΔF508 mutation decreases the stability of cystic fibrosis transmembrane conductance regulator in the plasma membrane. Determination of functional half-lives on transfected cells. J. Biol. Chem. 268:21592–21598; 1993.

    PubMed  CAS  Google Scholar 

  26. Marty, A.; Neher, E. Tight-seal whole cell recording. In: Sakmann, B., Neher, E., eds. Single channel recording. New York: Plenum Press; 1983:107–122.

    Google Scholar 

  27. Quinton, P. Cystic fibrosis: a disease of electrolyte transport. FASEB J. 4:2709–2717; 1990.

    PubMed  CAS  Google Scholar 

  28. Rosenfeld, M. A.; Yoshimura, K.; Trapnell, B. C., et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68:143–155; 1992.

    Article  PubMed  CAS  Google Scholar 

  29. Wheelock, M. J.; Buck, C. A.; Bechtol, K. B., et al. Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell-cell adhesion. J. Cell Biochem. 34:187–202; 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Yang, Y.; Janich, S.; Cohn, J. A., et al. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. USA 90:9480–9484; 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Yankaskas, J. R.; Haizlip, J. E.; Conrad, M., et al. Papilloma virus immortalized tracheal epithelial cells retain a well-differentiated phenotype. Am. J. Physiol. C1219–C1230; 1993.

  32. Zabner, J.; Coulture, L. A.; Gregory, R. J., et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 75:207–216; 1993.

    Article  PubMed  CAS  Google Scholar 

  33. Zeitlin, P. L.; Lu, L.; Rhim, J., et al. A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am. J. Respir. Cell. Mol. Biol. 4:313–319; 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunzelmann, K., Lei, D.C., Eng, K. et al. Epithelial cell specific properties and genetic complementation in a ΔF508 cystic fibrosis nasal polyp cell line. In Vitro Cell Dev Biol - Animal 31, 617–624 (1995). https://doi.org/10.1007/BF02634315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634315

Key words

Navigation