Skip to main content
Log in

Topics in isotopic pairs and their representations. II. The general supercase

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

Isotopic pairs—algebraic objects suitable for describing some forms of non-Hamiltonian (magnetic-type) interactions of Hamiltonian systems at the quantum level—are considered with maximum generality within the framework of the vector superalgebra formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Yuriev,Theor. Math. Phys.,105, 1201 (1995).

    Article  Google Scholar 

  2. F. A. Berezin,An Introduction to Algebra and Analysis of Commuting and Anticommuting Variables [in Russian], Nauka, Moscow (1983);

    Google Scholar 

  3. D. A. Leites,Usp. Mat. Nauk,35, No. 1, 3 (1980);

    MATH  MathSciNet  Google Scholar 

  4. Yu. I. Manin,Gauge Fields and Complex Geometry, Springer, New York-Berlin-Heidelberg (1988);

    Google Scholar 

  5. V. I. Ogievetskii and E. S. Sokachev, in:Mathematical Analysis [in Russian], Vol. 22, VINITI, Moscow (1984), p. 137;

    Google Scholar 

  6. A. A. Roslyi, O. M. Khudaverdyan, and A. S. Schwarz, in:Modern Problems in Mathematics. Basic Research Fields [in Russian], Vol. 9, VINITI, Moscow (1986), p. 247.

    Google Scholar 

  7. D. Juriev,Russian J. Math. Phys.,5 (1997), [e-version: funct-an/9409003], to appear; “On the dynamics of noncanonically coupled oscillators and its hidden superstructure,” Preprint ESI 167 (1994), [e-version: solvint/9503003].

  8. A. G. Kurosh,General Algebra [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  9. D. Juriev, “On the non-Hamiltonian interaction of two rotators,” Report RCMPI/95-01 (1995), [e-version: dg-ga/9409004].

  10. M. Koecher,Jordan Algebras and Their Applications, Academic Press, New York (1962);

    MATH  Google Scholar 

  11. N. Jacobson,Structure and Representations of Jordan Algebras, Amer. Math. Soc., Providence (1968);

    MATH  Google Scholar 

  12. M. Koecher,An Elementary Approach to Bounded Symmetric Domains, Houston Univ., Houston (1969);

    MATH  Google Scholar 

  13. O. Loos,Symmetric Spaces, W. A. Benjamin, New York-Amsterdam (1969).

    MATH  Google Scholar 

  14. O. Loos,Jordan Pairs, Springer (1975);

  15. E. N. Kuz’min and I. P. Shestakov, in:Modern Problems in Mathematics, Basic Research Fields [in Russian], Vol. 57, VINITI, Moscow (1992).

    Google Scholar 

  16. J. R. Faulkner and J. C. Ferrar,Commun. Alg.,8, 993 (1980).

    MATH  MathSciNet  Google Scholar 

  17. D. Juriev, “Topics in hidden symmetries,” hep-th/9405050 (1994).

  18. D. V. Yuriev, e-version: funct-an/9411007” to appear inFund. Prikl. Mat..

  19. D. A. Leites, in:Modern Problems in Mathematics. The Latest Advances [in Russian], Vol. 25, VINITI, Moscow (1984), p. 3.

    Google Scholar 

  20. A. Guichardet,Cohomologie des Groupes Topologiques et des Algébres de Lie, Cedic/Fernan Nathan, Paris (1980);

    MATH  Google Scholar 

  21. D. B. Fuks,Cohomology of Infinite-Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  22. D. P. Zhelobenko,Usp. Mat. Nauk,17, No. 1, 27 (1962);

    Google Scholar 

  23. J. Mickelsson,Rep. Math. Phys.,4, 303 (1973);18, 197 (1980);

    Article  Google Scholar 

  24. A. Homberg,Invent. Math.,37, 42 (1975);

    Google Scholar 

  25. D. P. Zhelobenko,Izv. Akad. Nauk SSSR, Ser. Mat.,52, 758 (1988);

    MATH  Google Scholar 

  26. D. P. Zhelobenko,J. Group Theory Phys.,1, 201 (1993);

    Google Scholar 

  27. D. P. Zhelobenko,Representations of Reductive Lie Algebras [in Russian], Nauka, Moscow (1994).

    Google Scholar 

  28. R. M. Asherova, Yu. F. Smirnov, and V. N. Tolstoi,Theor. Math. Phys.,8, 813 (1971);Mat. Zam.,26, 15–26 (1979);

    Article  Google Scholar 

  29. B. N. Tolstoi, in:Group-Theoretic Methods in Physics [in Russian], Vol. 2, Nauka, Moscow (1986), p. 46.

    Google Scholar 

  30. S. Okubo,J. Math. Phys.,35, 2785 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. M. A. Semenov-Tyan-Shanskii,Funkts. Anal. Prilozhen.,13, No. 4, 17 (1983).

    MathSciNet  Google Scholar 

  32. D. P. Zhelobenko and A. I. Shtern,Representations of Lie Groups [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  33. N. N. Bogoliubov, V. V. Tolmachev, and D. V. Shirkov,A New Method in the Theory of Superconductivity, Chapman and Halls, London (1959).

    Google Scholar 

  34. A. Barut, R. R⇂czka,Theory of Group Representation and Applications, Polish Scientific Publ., Warsaw (1977).

    Google Scholar 

  35. M. V. Karasev and V. P. Maslov,Nonlinear Poisson Brackets. Geometry and Quantization, Am. Math. Soc., Providence (1993).

    MATH  Google Scholar 

  36. V. Nazaikinskii, B. Sternin, and V. Shatalov,Methods of Noncommutative Analysis: Theory and Applications, Walter de Gruyter, Berlin-New York (1995).

    MATH  Google Scholar 

  37. L. D. Faddeev and V. E. Korepin,Theor. Math. Phys.,25, 1039 (1975); L. D. Faddeev and V. E. Korepin,Phys. Rep.,42, No. 1 (1978).

    Article  MathSciNet  Google Scholar 

  38. V. G. Drinfel’d,Zap. Nauchn. Sem. LOMI,155, 18 (1986);

    Google Scholar 

  39. N. Yu. Reshetikhin, L. A. Takhtadzhyan, and L. D. Faddeev,Algebra Anal.,1, 178 (1989);

    MathSciNet  Google Scholar 

  40. A. P. Isaev,Fiz. Elem. Chast. At. Yadra,26, No. 5, 1204 (1995).

    Google Scholar 

  41. A. Gerasimov, S. Khoroshkin, D. Lebedev, and A. Morozov, “Generalized Hirota equations and representation theory. I. The case of SL(2) and SL q (2),” hep-th/9405011 (1994): A. Mironov, “Quantum deformations ofτ-Functions, bilinear identities and representation theory,” hep-th/9409190 (1994); S. Kharchev, A. Mironov, and A. Morozov, “Non-standard KP evolution and quantumτ-functions,” q-alg/9501013 (1995).

  42. P. Lax,Commun. Pure Appl. Math.,21, 467 (1968);

    Article  MATH  MathSciNet  Google Scholar 

  43. J. Moser,Adv. Math.,16, 197 (1975);

    Article  MATH  Google Scholar 

  44. V. E. Zakharov and A. B. Shabat,Funkts. Anal. Prilozhen.,8, No. 3, 43 (1974);13, No. 3, 13 (1979);

    MathSciNet  Google Scholar 

  45. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov,Usp. Mat. Nauk,31, No. 1, 55 (1976);

    MATH  MathSciNet  Google Scholar 

  46. S. P. Novikov, S. V. Manakov, L. P. Pitaevsky, and V. E. Zakharov,Theory of Solitons. The Method of Inverse Scattering, Plenum, New York (1984).

    Google Scholar 

  47. A. M. Perelomov,Integrable Systems of Classical Mechanics and Lie Algebras [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  48. D. Juriev,Russian J. Math. Phys.,3, 453 (1995), [e-version: solv-int/9505001 (1995)]; “Topics in non-Hamiltonian (magnetic-type) interactions of classical Hamiltonian dynamical systems. II. Generalized Euler-Ampère equations and Biot-Savart operators,” Report RCMPI-96/01 (1996), [e-version: mp_arc/95-538].

    MATH  MathSciNet  Google Scholar 

  49. A. P. Veselov and A. B. Shabat,Funkts. Anal. Prilozhen.,27, No. 2, 1 (1993);

    MathSciNet  Google Scholar 

  50. A. P. Veselov and S. P. Novikov,Usp. Mat. Nauk,50, No. 6, 171 (1995).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 111, No. 1, pp. 149–158, April, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuriev, D.V. Topics in isotopic pairs and their representations. II. The general supercase. Theor Math Phys 111, 511–518 (1997). https://doi.org/10.1007/BF02634206

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634206

Keywords

Navigation