Skip to main content

Formation of spicules by sclerocytes from the freshwater spongeEphydatia muelleri in short-term cultures in vitro

Summary

Cells from the freshwater spongeEphydatia muelleri were isolated by dissociating hatching gemmules. During the first 24 h the cells reaggregated, but the aggregates progressively disintegrated again to single cells, among which the spicule-forming sclerocytes were recognized. Such cultures were used to study spicule (megascleres) formation in vitro. The isolated sclerocytes formed the organic central axial filament onto which they deposited inorganic silicon. The size of the spicules (200 to 350µm in length) as well as the rate of spicule formation (1 to 10µm/h) under in vitro conditions were similar to the values measured in vivo. Immediately after completion of spicule formation, or even before, the sclerocyte could start formation of a new spicule; 5% of the cells were in the process of forming two spicules simultaneously. Cultivation of sclerocytes in the absence of silicon resulted in the formation of the axial filament only. We succeeded in maintaining the sclerocytes in a proliferating and spicule-forming state for up to 3 mo. These results demonstrate that the establishment of short-term cell cultures fromE. muelleri is possible; however, future studies must be undertaken to identify the growth factors required for a permanent culture of sponge cells.

This is a preview of subscription content, access via your institution.

References

  1. Bachmann, M.; Althoff, H.; Selenka, C., et al. Translocation of the nuclear autoantigen La to the cell surface of Herpes simplex virus type 1 infected cells. Autoimmunity 12:37–45; 1992.

    PubMed  CAS  Google Scholar 

  2. Belas, F. J.; Francis, J. C.; Poirrier, M. A. Significance of small organic chelators in laboratory cultures ofEphydatia fluviatilis (Porifera: Spongillidae) Trans. Am. Microsc. Soc. 111(3):169–179; 1992.

    Article  Google Scholar 

  3. Bergquist, P. R. The sponges. London: Hutchinson Ltd.; 1978.

    Google Scholar 

  4. Berthold, G. Untersuchungen über die Histoblastendifferenzierung in der Gemmula vonEphydatia fluviatilis. Z. Wiss. Mikr. Tech. 69:227–243; 1969.

    Google Scholar 

  5. Coutinho, C.; Vissers, S.; Van de Vyver, H. Evidence of homeobox genes in the freshwater spongeEphydatia fluviatilis. In: Soest, R. W. M. v.; Kempen T. M. G. v.; Braekman, J. C., eds. Sponges in time and space. Rotterdam: Balkema Press; 1994:47–54.

    Google Scholar 

  6. Evans, R. The structure and metamorphosis of larvae ofSpongilla lacustris. Q. J. Microsc. Sci. 43:363–477; 1899.

    Google Scholar 

  7. Garrone, R. Collagène, spongine et squelette mineral chez l’épongeHaliclona rosea (O.S.). J. Micro. 8:581–598; 1969.

    CAS  Google Scholar 

  8. Harrison, F. W.; Cowden, R. R. Dormancy release and development from gemmules of the fresh-water sponge,Spongilla lacustris: a supravital study with acridine orange. Trans. Am. Microsc. Soc. 102:309–318; 1983.

    Article  Google Scholar 

  9. Holvoet, S.; van de Vyver, G. Skeletogenesis inEphydatia fluviatilis grown in the presence of puromycin and hydroxyurea. In: Rützler, K., ed. New perspectives in sponge biology. Washington, DC: Smithsonian Institution Press; 1985a:200–205.

    Google Scholar 

  10. Holvoet, S.; van de Vyver, G. Effects of 2,2′-bipyridine on skeletogenesis ofEphydatia fluviatilis. In: Rützler, K., ed. New perspectives in sponge biology. Washington, DC: Smithsonian Institution Press; 1985b:206–210.

    Google Scholar 

  11. Imsiecke, G. Ingestion, digestion, and egestion inSpongilla lacustris (Porifera, Spongillidae) after pulse feeding withChlamydomonas reinhardtii (Volvocales). Zoomorphology (Berl) 113:233–244; 1993.

    Article  Google Scholar 

  12. Imsiecke, G.; Borojevic, R.; Müller, W. E. G. Retinoic acid acts as a morphogen in freshwater sponges. Invertebr. Reproduc. & Dev. 26:89–98; 1994.

    CAS  Google Scholar 

  13. Minchin, E. A. Sponge spicules. A summary of the present knowledge. Ergeb. Fortschr. Zool. 2:171–274; 1909.

    Google Scholar 

  14. Müller, W. E. G.; Zahn, R. K.; Maidhof, A.Spongilla gutenbergiana n.sp., ein Süßwasserschwamm aus dem Mittel-Eozän von Messel. Senckenb. Lethaea 63:465–472; 1982.

    Google Scholar 

  15. Müller, W. E. G.; Rottmann, M.; Diehl-Seifert, B., et al. Role of the aggregation factor in the regulation of phosphoinositide metabolism in sponges. Possible consequences on calcium efflux and on mitogenesis. J. Biol. Chem. 262:9850–9858; 1987.

    PubMed  Google Scholar 

  16. Müller, W. E. G.; Müller, I. M.; Gamulin, V. On the monophyletic evolution of the metazoa. Brasil. J. Med. Biol. Res. 27:2083–2096; 1994.

    Google Scholar 

  17. Orlov, Y. A. Fundamentals of palaeontology, vol II. Jerusalem: Israel program for scientific translations; 1971:11.

    Google Scholar 

  18. Ott, E.; Volkheimer, W. Palaeospongilla chubutensis n.g. et n.sp., ein Süßwasserschwamm aus der Kreide Patagoniens. N. Jb. Geol. Paläont. Abh. 140:49–63; 1972.

    Google Scholar 

  19. Pé; J. Étude quantitative de la régulation du squelette chez une éponge d’eau douce. Arch. Biol. (Bruxelles) 84:147–173; 1973.

    Google Scholar 

  20. Penney, J. T.; Racek, A. A. Comprehensive revision of a worldwide collection of freshwater sponges (Porifera: Spongillidae). US Nat. Mus. Bull. 272:1–184; 1968.

    Google Scholar 

  21. Poirrier, M. A.; Trabanino, S. Freshwater sponges (Porifera, Spongillidae) from lake Ilopango, El Salvador, with observations on spicule malformation in Spongilla alba. Trans. Am. Microsc. Soc. 108:211–214; 1989.

    Article  Google Scholar 

  22. Rasmont, R. Une technique de culture des éponges d’eau douce en milieu controlé. Ann. Soc. R. Zool. Belg. 91:147–155; 1961.

    Google Scholar 

  23. Russell, W. C.; Newman, C.; Williamson, D. H. A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasma viruses. Nature 153:461–462; 1975.

    Article  Google Scholar 

  24. Rozenfeld, F. Effects of puromycin on the differentiation of the freshwater sponge:Ephydatia fluviatilis. Differentiation 17:193–198; 1980.

    PubMed  Article  CAS  Google Scholar 

  25. Schäcke, H.; Schröder, H. C.; Gamulin, V., et al. Molecular cloning of a tyrosine kinase gene from the marine spongeGeodia cydonium: a new member belonging to the receptor tyrosine kinase class II family. Mol. Memb. Biol. 11:101–107; 1994.

    Article  Google Scholar 

  26. Schmidt, I. Étude préliminaire de la différenciation des thésocytes d’Ephydatia fluviatilis L. Extraits méchaniquement de la gemmules. C. R. Acad. Sci. Paris Sér. D. 271:924–927; 1970.

    Google Scholar 

  27. Schulze, P. Beiträge zur Kenntnis der Kieselnadelbildung besonders bei den Spongilliden. Arch. Zellforsch. 17:105–130; 1923.

    Google Scholar 

  28. Shore, R. E. Axial filament of siliceous sponge spicules, its organic components and synthesis. Biol. Bull. 143:689–698; 1972.

    Article  CAS  Google Scholar 

  29. Simon, L. Über die Spezifität der Nadeln und die Variabilität der Arten bei den Spongilliden. Zool. Jahrb. 64:97–266; 1953.

    Google Scholar 

  30. Simpson, T. L. The biology of sponges. New York: Springer-Verlag; 1984.

    Google Scholar 

  31. Simpson, T. L. Effects of germanium on silica deposition in sponges. In: Simpson, T. L.; Volcani, B. E., eds. Silicon and siliceous structures in biological systems. New York: Springer-Verlag; 1981:527–550.

    Google Scholar 

  32. Simpson, T. L.; Vaccaro, C. A. An ultrastructural study of silica deposition in the freshwater spongeSpongilla lacustris. J. Ultrastruct. Res. 47:296–309; 1974.

    PubMed  Article  CAS  Google Scholar 

  33. Weissenfels, N. Biologie und Mikroskopische Anatomie der Süßwasserschwämme (Spongillidae). Stuttgart, New York: Fischer; 1989.

    Google Scholar 

  34. Weissenfels, N.; Landschoff, H. W. Bau und Funktion des SüsswasserschwammsEphydatia fluviatilis L. (Porifera). IV. Die Entwicklung der monaxialen SiO2-Nadeln in Sandwich-Kulturen. Zool. Jb. Anat. 98:355–371; 1977.

    Google Scholar 

  35. Yourassowsky, C.; Rasmont, R. The differentiation of sclerocytes in freshwater sponges grown in a silica-poor medium. Differentiation 25:5–9; 1983.

    Article  Google Scholar 

  36. Zeuthen, E. On the hibernation ofSpongilla lacustris (L.). Z. Vgl. Physiol. 26:537–547; 1939.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Imsiecke, G., Steffen, R., Custodio, M. et al. Formation of spicules by sclerocytes from the freshwater spongeEphydatia muelleri in short-term cultures in vitro. In Vitro Cell Dev Biol - Animal 31, 528–535 (1995). https://doi.org/10.1007/BF02634030

Download citation

Key words

  • sponges
  • Ephydatia muelleri
  • spicules
  • sclerocytes
  • cell culture