Skip to main content
Log in

Differentiation and mineralization in chick chondrocytes maintained in a high cell density culture: A model for endochondral ossification

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Chondrocytes isolated from the proliferative and differentiating zones of 3-wk-old chick growth plates were cultured in the presence of 10% fetal bovine serum (FBS) and ascorbic acid for up to 21 d in a high cell density culture within Eppendorf tubes. The proliferative, differentiating, and calcification properties of the chondrocytes were examined by immunolocalization and by enzyme histochemical and biochemical methods. The cells maintained a chondrocyte phenotype throughout culture: they were round in shape and synthesized both collagen type II and proteoglycans. The expression of a hypertrophic phenotype was evident by Day 3 of culture and from this time onwards characteristics of terminal differentiation were observed. The cells were positive for both alkaline phosphatase (ALP) activity and c-myc protein and the surrounding matrix stained strongly for collagen type X. Small foci of mineralization associated with individual chondrocytes were first evident by Day 6 and more widespread areas of mineralization occupying large areas of matrix were present by Day 15. Mineralization occurred without the addition of exogenous phosphate to the medium. This culture system displays characteristics that are similar in both morphological and developmental terms to that of chick chondrocyte differentiation and calcification in vivo and therefore offers an excellent in vitro model for endochondral ossification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiska, T.; Gay, C. V. The plasma membrane and matrix vesicles of the mouse growth plate chondrocytes during differentiation as revealed in freeze fracture replicas. Am. J. Anat. 173:269–286; 1985.

    Article  Google Scholar 

  2. Ali, S. Y.; Sajdera, S. W.; Anderson, H. C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Natl. Acad. Sci. USA 67:1513–1520; 1970.

    Article  PubMed  CAS  Google Scholar 

  3. Aydelotte, M. B.; Kuettner, K. E. Differences between sub-populations of cultured articular chondrocytes. 1. Morphology and cartilage matrix production. Connect Tissue Res. 18:205–222; 1988.

    PubMed  CAS  Google Scholar 

  4. Bashey, R. I.; Iannotti, J. P.; Rao, V. H., et al. Comparison of morphological and biochemical characteristics of cultured chondrocytes isolated from proliferative and hypertrophic zones of bovine growth plate cartilage. Differentiation 46:199–207; 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Benya, P. D. Introduction and survey of techniques for chondrocyte culture. In: Maroudas, A.; Kuettner, K., eds. Methods in cartilage research. London: Academic Press; 1990:85–89.

    Google Scholar 

  6. Benya, P. D.; Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224; 1982.

    Article  PubMed  CAS  Google Scholar 

  7. Bradford, M. M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  8. Brunk, C. F.; Jones, K. C.; James, T. W. Assay for nanogram quantities of DNA in cellular homogenates. Anal. Biochem. 92:497–500; 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Buckwalter, J. A.; Mower, D.; Ungar, J., et al. Morphometric analysis of chondrocyte hypertrophy. J. Bone J. Surg. Am. Vol. 68A:243–255; 1986.

    Google Scholar 

  10. Castagnola, P.; Dozin, B.; Moro, G., et al. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J. Cell Biol. 106:461–467; 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Chan, D.; Lamande, S. R.; Cole, W., et al. Regulation of procollagen synthesis and processing during ascorbate-induced extracellular matrix accumulation in vitro. Biochem. J. 269:175–181; 1990.

    PubMed  CAS  Google Scholar 

  12. Elima, K.; Vuorio, E. Expression of mRNAs for collagen and other matrix components in dedifferentiating and redifferentiating human condrocytes in culture. FEBS Lett. 258:195–198; 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Evan, G.; Wyllie, A. H.; Gilbert, C. S., et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128; 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Farndale, R. W.; Buttle, D. J.; Barrett, A. J. Improved quantification and discrimination of sulphated glycosaminoglycans by use of dimethylene blue. Biochim. Biophys. Acta 883:173–177; 1986.

    PubMed  CAS  Google Scholar 

  15. Farquharson, C.; Hesketh, J. E.; Loveridge, N. The proto-oncogene c-myc is involved in cell differentiation as well as cell proliferation: studies on growth plate chondrocytes in situ. J. Cell Physiol. 152:135–144; 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Farquharson, C.; Whitehead, C. C.; Loveridge, N. Alterations in glycosaminoglycan concentration and sulfation during chondrocyte maturation. Calcif. Tissue Int. 54:296–303; 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Farquharson, C.; Whitehead, C. C.; Rennie, S., et al. Cell proliferation and enzyme activities associated with the development of avian tibial dyschondroplasia: an in situ biochemical study. Bone 13:59–67; 1992.

    Article  PubMed  CAS  Google Scholar 

  18. Firschein, H. E.; Schill, J. P. The determination of total hydroxyproline in urine and bone extracts. Anal. Biochem. 14:296–304; 1987.

    Article  Google Scholar 

  19. Genge, B. R.; Sauer, G. R.; Licia, N. Y., et al. Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle-mediated mineralization. J. Biol. Chem. 263:18513–18519; 1988.

    PubMed  CAS  Google Scholar 

  20. Gerstenfeld, L. C.; Landis, W. J. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system. J. Cell Biol. 112:501–513; 1991.

    Article  PubMed  CAS  Google Scholar 

  21. Gibson, G. J.; Schor, S. L.; Grant, M. E. Effects of matrix macromolecules on chondrocyte gene expression: synthesis of a low molecular weight collagen species by cells cultured within collagen gels. J. Cell Biol. 93:767–774; 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Grandolfo, M.; D Andrea, P.; Paoletti, M., et al. Culture and differentiation of chondrocytes entrapped in alginate gels. Calcif. Tissue Int. 52:42–48; 1993.

    Article  PubMed  CAS  Google Scholar 

  23. Heinegard, D. Polydispersity of cartilage proteoglycans. J. Biol. Chem. 252:1980–1989; 1977.

    PubMed  CAS  Google Scholar 

  24. Horton, W.; Hassel, J. R. Independence of cell shape and loss of cartilage matrix production during retinoic acid treatment of cultured chondrocytes. Dev. Biol. 115:392–397; 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Hunziker, E. B.; Schenk, R. K. Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J. Physiol. 414:55–71; 1989.

    PubMed  CAS  Google Scholar 

  26. Iwamoto, M.; Yagami, K.; Lu Valle, P., et al. Expression and role of c-myc in chondrocytes undergoing endochondral ossification. J. Biol. Chem. 268:9645–9652; 1993.

    PubMed  CAS  Google Scholar 

  27. Jikko, A.; Aoba, T.; Murakami, H., et al. Characterization of the mineralization process in cultures of rabbit growth plate chondrocytes. Dev. Biol. 156:372–380; 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Kardos, T. B.; Hubbard, M. J. Are matrix vesicles apoptotic bodies? In: Dixon, A. D.; Sarnat, B. G., eds. Factors and mechanisms influencing bone growth. New York: Alan R. Liss; 1982:45–62.

    Google Scholar 

  29. Kato, Y.; Iwamoto, M.; Koike, T., et al. Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor b and serum factors. Proc. Natl. Acad. Sci. USA 85:9552–9556; 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Kirsch, T.; Swoboda, B.; von der Mark, K. Ascorbate independent differentiation of human chondrocytes in vitro: simultaneous expression of types I and X collagen and matrix mineralization. Differentiation 52:89–100; 1992.

    Article  PubMed  CAS  Google Scholar 

  31. Kuettner, K. E.; Pauli, B. U.; Gall, G., et al. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. 1. Isolation, culture characteristics, and morphology. J. Biol. Chem. 93:743–750; 1982.

    CAS  Google Scholar 

  32. Leach, R. L.; Roselot, G. E. The use of avian epiphyseal chondrocytes for in vitro studies of skeletal metabolism. J. Nutr. 122:802–805; 1992.

    PubMed  CAS  Google Scholar 

  33. Leboy, P. S.; Vaias, L.; Uschmann, B. Ascorbic acid induces alkaline phosphatase, type X collagen, and calcium deposition in cultured chick chondrocytes. J. Biol. Chem. 264:17281–17286; 1989.

    PubMed  CAS  Google Scholar 

  34. Lian, J. B.; McKee, M. D.; Todd, A. M., et al. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro. J. Cell. Biochem. 52:206–219; 1993.

    Article  PubMed  CAS  Google Scholar 

  35. Linsenmayer, T. F.; Henrix, M. J. C. Monoclonal antibodies to connective tissue macromolecules type II collagen. Biochem. Biophys. Res. Commun. 92:440–446; 1980.

    Article  PubMed  CAS  Google Scholar 

  36. Loveridge, N.; Thomson, B. M.; Farquharson, C. Bone growth and turnover. In: Whitehead, C. C., ed. Bone biology and skeletal disorders in poultry. Poultry Science Symposium 23. Abingdon, England: Carfax Publishing Co.; 1992:3–17.

    Google Scholar 

  37. Mayne, R.; Vail, M. S.; Mayne, P. M., et al. Changes in the type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc. Natl. Acad. Sci. USA 73:1674–1678; 1976.

    Article  PubMed  CAS  Google Scholar 

  38. Miller, E. J. Biochemical characteristics and biological significance of the genetically distinct collagens. Mol. Cell Biochem. 13:165–191; 1976.

    Article  PubMed  CAS  Google Scholar 

  39. Nakagawa, Y.; Shimizu, K.; Hamamoto, T., et al. Electron microscopy of calcification during high-density suspension culture of chondrocytes. Calcif. Tissue Int. 53:127–134; 1993.

    Article  PubMed  CAS  Google Scholar 

  40. O Keefe, R. J.; Rosier, R. N.; Puzas, J. E. Differential expression of effects of maturationally distinct subpopulations of growth plate chondrocytes. Connect. Tissue Res. 24:53–66; 1990.

    Article  CAS  Google Scholar 

  41. Robinson, R. The possible significance of hexosephospheric esters in ossification in vitro. Biochem. J. 17:286–293; 1923.

    Google Scholar 

  42. Schmid, T. M.; Bonen, D. K.; Luchene, L., et al. Late events in chondrocyte differentiation: hypertrophy, type X collagen synthesis and matrix calcification. In Vivo 5:553–540; 1991.

    Google Scholar 

  43. Schwartz, Z.; Boyan, B. The effects of vitamin D metabolites on phospholipase A2 activity of growth zone and resting zone cartilage cells in vitro. Endocrinology 122:2191–2198; 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Shi, Y.; Glynn, J. M.; Guilbert, L. J., et al. Role of c-myc in activation-induced apoptotic cell death in T cell hybridomas. Science 257:212–214; 1992.

    Article  PubMed  CAS  Google Scholar 

  45. Sissons, H. A. Experimental determination of rate of longitudinal bone growth. J. Anat. 87:228–237; 1953.

    PubMed  CAS  Google Scholar 

  46. Sommarin, Y.; Larsson, T.; Heinegard, D. Chondrocyte matrix interactions. Exp. Cell Res. 184:181–192; 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Stephens, M.; Kwan, A. P.; Bayliss, M. T., et al. Human articular surface chondrocytes initiate alkaline phosphatase and type X collagen synthesis in suspension culture. J. Cell Sci. 103:1111–1116; 1992.

    PubMed  CAS  Google Scholar 

  48. Suda, S.; Takahashi, N.; Shinki, T., et al. 1, alpha-25-dihydroxyvitamin D3 receptors and their action in embryonic chick chondrocytes. Calcif. Tissue Int. 37:82–90; 1985.

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki, F.; Takase, T.; Takigawa, M., et al. Stimulation of the initial stage of endochondral ossification: in vitro sequential culture of growth cartilage cells and bone marrow cells. Proc. Natl. Acad. Sci. USA 78:2368–2372; 1981.

    Article  PubMed  CAS  Google Scholar 

  50. Tacchetti, C.; Quarto, R.; Campanile, G., et al. Calcification of in vitro developed hypertrophic cartilage. Dev. Biol. 132:442–447; 1989.

    Article  PubMed  CAS  Google Scholar 

  51. Tapp, E. Tetracycline labelling methods of measuring the growth of bones in the rat. J. Bone J. Surg. Br. Vol. 48:517–525; 1966.

    CAS  Google Scholar 

  52. Thorp, B. H. Relationship between the rate of longitudinal bone growth and physeal thickness in the growing fowl. Res. Vet. Sci. 45:83–85; 1988.

    PubMed  CAS  Google Scholar 

  53. Thorp, B. H.; Anderson, I.; Jakowlew, S. B. Transforming growth factor b1, -b2 and -b3 in cartilage and bone cells during endochondral ossification in the chick. Development 114:907–911; 1992.

    PubMed  CAS  Google Scholar 

  54. Tschan, T.; Hoerler, I.; Houze, Y., et al. Resting chondrocytes in culture survive without growth factors, but are sensitive to oxygen metabolites. J. Cell Biol. 111:257–260; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farquharson, C., Whitehead, C.C. Differentiation and mineralization in chick chondrocytes maintained in a high cell density culture: A model for endochondral ossification. In Vitro Cell Dev Biol - Animal 31, 288–294 (1995). https://doi.org/10.1007/BF02634003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634003

Key words

Navigation