Skip to main content
Log in

Growth of separated and recombined neonatal rat uterine luminal epithelium and stroma on extracellular matrix: Effects of in vivo tamoxifen exposure

  • Growth, Differentiation And Senestence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We have developed a system for serum-free culture of separated uterine epithelium and stroma from 11-day-old rats recombined on extracellular matrix extracted from Englebreth-Holm-Swarm tumors. Epithelium grew and, after 2 days in culture, developed into luminal epithelial spheres (LES) surrounding a fluid-filled lumen. Individual LES cells maintained epithelial cell characteristics such as basally located nuclei, apical microvilli (oriented toward the lumen), lateral membranes with interdigitations and desmosomes, secretory Golgi complexes, and abundant mitochondria and rough endoplasmic reticulum. Secretory vesicles were ubiquitous throughout the luminal fluid. Addition of 17β-estradiol to the growth medium increased the number and longevity of the LES. Prior exposure of uteri to tamoxifen via s.c. injection in vivo on postnatal Days 1 to 5 reduced or completely inhibited formation of LES in vitro. These effects occurred regardless of whether the stromal or epithelial component of the recombinant tissue was exposed to tamoxifen. These data suggest a directive property of neonatal stroma in culture resulting in the formation of highly secretory spherical epithelial structures completely enclosing a lumen. LES formation is responsive to both estrogen (positive response) and antiestrogen (negative response).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barcellos-Hoff, M. H.; Neville, P. N.; Aggeler, J., et al. Polarized secretion by mammary epithelial cell cultures on EHS-matrix. J. Cell Biol. 105:220a; 1987.

    Google Scholar 

  • Barcellos-Hoff, M. H.; Aggeler, J.; Ram, T. G., et al. Functional differentiation and alveolar morphogenesis of primary mammary epithelial cells cultured on reconstituted basement membrane. Development 105:223–235; 1989.

    PubMed  CAS  Google Scholar 

  • Bigsby, R. M.; Cooke, P. S.; Cunha, G. R. A simple, efficient method for separating murine uterine epithelial and mesenchymal cells. Am. J. Physiol. 251:E630-E636; 1986.

    PubMed  CAS  Google Scholar 

  • Bissell, M. J.; Ram, T. G. Regulation of functional cytodifferentiation and histogenesis in mammary epithelial cells: role of extracellular matrix. Environ. Health Perspect. 80:61–70; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Branham, W. S.; Lyn-Cook, B. D.; Andrews, A., et al. Growth of neonatal rat uterine luminal epithelium on extracellular matrix. In Vitro Cell. Dev. Biol. 27A:442–446; 1991.

    PubMed  CAS  Google Scholar 

  • Branham, W. S.; Sheehan, D. M.; Zehr, D. R., et al. The postnatal ontogeny of rat uterine glands and age-related effects of 17β-estradiol. Endocrinology 117:2229–2237; 1985a.

    PubMed  CAS  Google Scholar 

  • Branham, W. S.; Sheehan, D. M.; Zehr, D. R., et al. Inhibition of rat uterine gland genesis by tamoxifen. Endocrinology 117:2238–2248; 1985b.

    PubMed  CAS  Google Scholar 

  • Branham, W. S.; Zehr, D. R.; Chen, J. J., et al. Alterations in developing rat uterine cell populations after neonatal exposure to estrogens and antiestrogens. Teratology 38:271–279; 1988a.

    Article  PubMed  CAS  Google Scholar 

  • Branham, W. S.; Zehr, D. R.; Chen, J. J., et al. Uterine abnormalities in rats exposed neonatally to diethylstilbestrol, ethynylestradiol, or clomiphene citrate. Toxicology 51:201–212; 1988b.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, P. S.; Uchima, F.-D. A.; Fujii, D. K., et al. Restoration of normal morphology and estrogen responsiveness in cultured vaginal and uterine epithelia transplanted with stromas. Proc. Natl. Acad. Sci. USA 83:2109–2113; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Cunha, G. R.; Chung, L. W. K.; Shannon, J. M., et al. Stromal-epithelial interactions in sex differentiation. Biol. Reprod. 22:19–42; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Cunha, G. R.; Sharon, J. M.; Taguchi, O., et al. Epithelial-mesenchymal interactions in hormone induced development. In: Sawyer, R. H.; Fallon, J. F., eds. Epithelial-mesenchymal interactions in development. New York: Praeger Publishers; 1983:51–74.

    Google Scholar 

  • Fromson, J. M.; Pearson, S.; Bramah, S. The metabolism of tamoxifen (ICI 46474). Part I: In laboratory animals. Xenobiotica 3:693–709; 1973.

    PubMed  CAS  Google Scholar 

  • Fukamachi, H. Factors controlling epithelial proliferation of mouse epithelial cells in primary serum-free culture. Zool. Sci. 6:1142; 1989.

    Google Scholar 

  • Fukamachi, H.; McLachlan, J. A. Proliferation and differentiation of mouse uterine epithelial cells in primary serum-free culture: estradiol-17β suppresses uterine epithelial proliferation cultured on a basement membrane-like substratum. In Vitro Cell. Dev. Biol. 27A:907–913; 1991.

    PubMed  CAS  Google Scholar 

  • Ghosh, D.; Danielson, K. G.; Alston, J. T., et al. Functional differentiation of mouse uterine epithelial cells grown on collagen gels or reconstituted basement membranes. In Vitro Cell. Dev. Biol. 27A:713–719; 1991.

    PubMed  CAS  Google Scholar 

  • Gotze, S.; Nishino, Y.; Neumann, F. Anti-oestrogenic effects of tamoxifen on mammary gland and hypophysis in female rats. Acta Endocrinol. 105:360–370; 1984.

    PubMed  CAS  Google Scholar 

  • Iguchi, T.; Uchima, F.-D. A.; Bern, H. A. Growth of mouse vaginal epithelial cells in culture: effect of sera and of supplemented serum-free media. In Vitro Cell. Dev. Biol. 23:535–540; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Iguchi, T.; Uchima, F.-D. A.; Ostrander, P. L., et al. Growth of normal mouse vaginal epithelial cells in and on collagen gels. Proc. Natl. Acad. Sci. USA 80:3743–3747; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Iguchi, T.; Uchima, F.-D. A.; Ostrander, P. L. Proliferation of normal mouse uterine luminal epithelial cells in serum-free collagen gel culture. Proc. Jpn. Acad. 61:292–295; 1985.

    Google Scholar 

  • Kleinman, H. K.; Luckenbill-Edds, L.; Cannon, F. W., et al. Use of extracellular matrix components for cell culture. Anal. Biochem. 166:1–13; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Liotta, L. A., et al. Isolation and characterization of type IV procollagen, laminin, and heparin sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Li, M. I.; Aggeler, J.; Farson, D. A., et al. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl. Acad. Sci. USA 84:136–140; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Rinehart, C. A.; Lyn-Cook, B. D.; Kaufman, D. G. Gland formation from human endometrial cells in vitro. In Vitro Cell. Dev. Biol. 24:1037–1041; 1988.

    Article  PubMed  Google Scholar 

  • Sheehan, D. M.; Branham, W. S.; Medlock, K. L., et al. Uterine responses to estradiol in the neonatal rat. Endocrinology 109:76–82; 1981.

    PubMed  CAS  Google Scholar 

  • Uchima, F.-D. A.; Edery, M.; Iguchi, T., et al. Growth of mouse vaginal epithelial cells in culture: functional integrity of the estrogen receptor system and failure of estrogen to induce proliferation. Cancer Lett. 35:227–235; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Uchima, F.-D. A.; Edery, M.; Iguchi, T., et al. Growth of mouse endometrial luminal epithelial cells in vitro: functional integrity of the oestrogen receptor system and failure of oestrogen to induce proliferation. J. Endocrinol. 128:115–120; 1990.

    Article  Google Scholar 

  • Uchima, F.-D. A.; Iguchi, T.; Pattamakom, S., et al. Effect of neonatal diethylstilbestrol exposure on the growth of mouse vaginal epithelial cells in serum-free collagen gel culture. Zool. Sci. 8:713–719; 1991.

    CAS  Google Scholar 

  • White, T. E. K.; di Sant’agnese, P. A.; Miller, R. K. Human endometrial cells grown on an extracellular matrix form simple columnar epithelia and glands. In Vitro Cell. Dev. Biol. 26:636–642; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Wicha, M. S. Growth and differentiation of rat mammary epithelium on mammary gland extracellular matrix. In: Hawkes, S.; Wang, J. L., eds. Extracellular matrix. New York: Academic Press; 1982:309–314.

    Google Scholar 

  • Yamashita, S.; Newbold, R. R.; McLachlan, J. A., et al. Developmental pattern of estrogen receptor expression in female mouse genital tracts. Endocrinology 125:2888–2896; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branham, W.S., Lyn-Cook, B.D., Andrews, A. et al. Growth of separated and recombined neonatal rat uterine luminal epithelium and stroma on extracellular matrix: Effects of in vivo tamoxifen exposure. In Vitro Cell Dev Biol - Animal 29, 408–414 (1993). https://doi.org/10.1007/BF02633990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633990

Key words

Navigation