Skip to main content
Log in

Cellular characteristics of long-term cultured rat parotid acinar cells

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology – Animal Aims and scope Submit manuscript

Summary

We have successfully maintained and biochemically characterized differentiated rat parotid acinar cells cultured for long periods (6 mo.). The cells were cultured on a reconstituted basement membrane matrix in a medium containing a variety of agents that promote cellular proliferation and differentiation. The cultured cells retain the characteristics of the parental parotid acinar cells. They exhibit both secretory granules and abundant cellular organelles required for protein synthesis and secretion. In situ hybridization and immunocytochemistry demonstrate high levels of proline-rich protein mRNA and protein, and lower levels of amylase mRNA and protein, in their cytoplasm. These findings suggest that rat parotid acinar cells can be maintained in a differentiated state in vitro for long periods, and can serve as a useful model system for studying the regulation of exocrine secretory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ann, D. K.; Clements, S.; Johnstone, E. M., et al. Induction of tissue specific proline-rich protein multigene families in rat and mouse parotid glands by isoproterenol. J. Biol. Chem. 262:899–904; 1987.

    PubMed  CAS  Google Scholar 

  2. Baum B. J.; Ambudkar, I. S.; Helman, J., et al. Dispersed salivary gland acinar cell preparations for use in studies of neuroreceptor-coupled secretory events. Methods Enzymol. 192:26–37; 1990.

    Article  PubMed  CAS  Google Scholar 

  3. Baum, B. J.; Levine, R. L.; Kuyatt, B. L., et al. Rat parotid gland amylase: evidence for alterations in an exocrine protein with increased age. Mech. Ageing Develop. 19:27–35; 1982.

    Article  CAS  Google Scholar 

  4. Bernfeld, P. Amylases,α andβ. Methods Enzymol. 1:149–157; 1955.

    Article  CAS  Google Scholar 

  5. Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254; 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Brown, A. M.; Rusnack, E. J.; Sciubba, J. J., et al. Establishment and characterization of an epithelial cell line from the rat submandibular gland. J. Oral. Pathol. Med. 18:206–213; 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Butcher, F. R.; Putney, J. W. Regulation of parotid gland function by cyclic necleotides and calcium. Adv. Cyclic Nucleotides Res. 13:215–249; 1980.

    CAS  Google Scholar 

  8. Cook, D. I.; Poronnik, P.; Young, J. A. Characterization of a 25-pS nonselective cation channel in a cultured secretory epithelial cell line. J. Membr. Biol. 114:37–52; 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Fahimi, H. D. Cytochemical localization of peroxidatic activity of catalase in rat hepatic microbodies (peroxisomes) J. Cell. Biol. 43:275–288; 1969.

    Article  PubMed  CAS  Google Scholar 

  10. Hatakeyama, S.; Sashima, M.; Tsushima, T., et al. Immunohistochemical demonstration of amylase in normal and neoplastic salivary glands. Jpn. J. Oral Biol. 27:702–708; 1985.

    Google Scholar 

  11. Herkenham, M.; Pert, C. B. Light microscopic localization of brain opiate receptors: a general autoradiographic method preserves tissue quality. J. Neuro. Sci. 2:1129–1149; 1982.

    CAS  Google Scholar 

  12. Herkenham, M. Receptor autoradiography: optimizing anatomical resolution. In: Leslie, F. M.; Altar, C. A., eds. Receptor localization: ligand autoradiography, receptor biochemistry and methodology, vol. 43. New York: Alan R. Liss; 1988:37.

    Google Scholar 

  13. Johnson, D. A. Changes in rat parotid salivary proteins associated with liquid diet-induced gland atrophy and isoproterenol induced gland enlargement. Arch. Oral Biol. 29:215–221; 1984.

    Article  PubMed  CAS  Google Scholar 

  14. Kiser, C. S.; Rahemtulla, F., Mansson-Rahemtulla, B. Monolayer culture of rat parotid acinar cells without basement membrane substrates. In Vitro Cell. Dev. Biol. 26:878–888; 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R., et al. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Kousvelari, E. E.; Baratz, R. S.; Burke, B., et al. Immunochemical identification and determination of proline-rich proteins in salivary secretions, enamel pellicle and glandular tissue specimens. J. Dent. Res. 59:1430–1438; 1980.

    PubMed  CAS  Google Scholar 

  17. Kousvelari, E. E.; Bannerjee, D. K.; Grant, S. R., et al. Modulation of oligosaccharide processing in an exocrine secretory glycoprotein of rat parotid cells byβ-adrenoreceptor activation. Arch. Oral Biol. 33:115–120; 1988.

    Article  PubMed  CAS  Google Scholar 

  18. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of T4 bacteriophage. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  19. Melton, D. A.; Krieg, P. A.; Rebagliati, M. R., et al. Efficientin vitro synthesis of biologically active RNA and DNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acid Res. 12:7035–7056; 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Oliver, C.; Waters, J. F.; Tolbert, C. L., et al. Growth of exocrine acinar cells on a reconstituted basement membrane gel. In Vitro Cell. Dev. Biol. 23:465–473; 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Oliver, C.; Waters, J. F.; Tolbert, C. L., et al. Culture of parotid acinar cells on a reconstituted basement membrane substratum. J. Dent. Res. 66:594–595; 1987.

    PubMed  CAS  Google Scholar 

  22. Redman, R. S.; Quissell, D. O.; Barzen, K. A. Effects of dexamethasone, epidermal growth factor and retinoic acid on rat submandibular acinar-intercalated duct complexes in primary culture. In Vitro Cell. Dev. Biol. 24:734–742; 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Reynolds, E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell. Biol. 17:208–212; 1963.

    Article  PubMed  CAS  Google Scholar 

  24. Schneyer, C. A. Regulation of salivary gland size. In: Goss, R. J., ed. Regulation of organ and tissue growth. New York: Academic Press; 1972:211–323.

    Google Scholar 

  25. Shirasuna, K.; Sato, M.; Miyazaki, T. A neoplastic epithelial duct cell line established from an irradiated human salivary gland. Cancer 48:745–752; 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, CK., Mertz, P.M., Oliver, C. et al. Cellular characteristics of long-term cultured rat parotid acinar cells. In Vitro Cell Dev Biol – Animal 27, 707–712 (1991). https://doi.org/10.1007/BF02633215

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02633215

Key words

Navigation