Skip to main content
Log in

Toward the production of artemisinin through tissue culture: Determining nutrient-hormone combinations suitable for cell suspension cultures

  • Secondary Metabolism
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Artemisia annua L. is the source of a potent antimalarial, artemisinin. As part of a program to produce artemisinin through tissue culture, a series of 14 multifactorial experiments were conducted to determine suitable conditions for initiating and maintaining friable callus fromA. annua. In the first six experiments, three different nutrient formulations [Gamborg B5 (B5), Murashige and Skoog (MS), and Whetmore and Rier (WR)], each with 32 combinations of auxins and cytokinins [2,4-dichlorophenoxyacetic acid (2,4-D) with benzyladenine (BA), or 1-naphthaleneacetic acid (NAA) with 6-furfurylaminopurine (kinetin)], were tested. Both B5 and WR nutrients supported friable callus formation from leaf explants with some combinations of auxin and cytokinin. Inasmuch as friable callus seemed to be produced over a wider range of auxin and cytokinin concentrations in combination with B5, the remaining experiments were conducted solely with this nutrient formulation. In the remaining eight experiments, it was determined that friable callus formed when combinations of NAA with kinetin or 2,4-D and BA were used with B5 medium. Lighter colored, more friable callus formed in response to 2,4-D and BA than with NAA and kinetin. No single combination of concentrations of auxin and cytokinin seemed to be “ideal” for producing friable callus. Ranges of 2,4-D from 0.5 to 2.0 with BA between 0.025 and 0.1, or NAA between 0.5 and 2.0 with kinetin between 0.5 and 1.0 mg/liter, produced acceptable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avery, M. A.; Chong, W. K. M.; Jenningswhite, C. Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent ofArtemisia annua L. J. Am. Chem. Soc. 114:974–979; 1992.

    Article  CAS  Google Scholar 

  2. Chen, H.; Chen, F.; He, X. Cited in Martinez and Staba (11).

  3. DiCosmo, F.; Misawa, M. Eliciting secondary metabolism in plant cell cultures. Trends Biotech. 3:318–322; 1985.

    Article  CAS  Google Scholar 

  4. Elhag, H. M.; El-Domiaty, M. M.; El-Feraly, F. S., et al. Selection and micropropagation of high artemisinin producing clones ofArtemisia annua L. Phytotherapy Res. 6:20–24; 1992.

    Article  CAS  Google Scholar 

  5. Fowler, M. W. Industrial applications of plant cell culture. In: Yeoman, M. M., ed. Plant cell culture technology. London: Blackwell Scientific Publications; 1986:202–227.

    Google Scholar 

  6. Francois, G.; Desombere, I.; Hendrix, L., et al. The production of antimalarial compounds by tissue cultures ofArtemisia annua. Physiol. Plant. 79:A103; 1990.

    Google Scholar 

  7. Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  8. Haigh, J. R.; Linden, J. C. Plant cell culture production of artemisinin. Biotechnology 31; 1990.

  9. He, X.; Zeng, M.; Li, G., et al. cited in Martinez and Staba (11).

  10. Klayman, D. L. Qinghaosu (Artemisinin): an antimalarial drug from China. Science 228:1049–1055; 1985.

    Article  PubMed  CAS  Google Scholar 

  11. Martinez, B. C.; Staba, E. J. The production of artemisinin inArtemisia annua L. tissue cultures. Adv. Cell Cult. 6:69–88; 1988.

    CAS  Google Scholar 

  12. Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  13. Nair, M. S. R.; Acton, N.; Klayman, D. L., et al. Production of artemisinin in tissue cultures ofArtemisia annua. J. Nat. Prod. (Lloydia) 49:504–507; 1986.

    Article  CAS  Google Scholar 

  14. Ramaswamy, R. Synthetic peptides in malaria research. Peptide Res. 4:210–219; 1991.

    Google Scholar 

  15. Roth, R. J.; Acton, N. A simple conversion of artemisic acid to artemisinin. J. Nat. Prod. (Lloydia) 52:1183–1185; 1989.

    CAS  Google Scholar 

  16. Schmid, G.; Hofheinz, W. Total synthesis of qinghaosu. J. Am. Chem. Soc. 105:624–625; 1983.

    Article  CAS  Google Scholar 

  17. Sturchler, D. How much malaria is there worldwide? Parasitol. Today 5:39–40; 1989.

    Article  Google Scholar 

  18. Tawfiq, N. K.; Anderson, L. A.; Roberts, M. F., et al. Antiplasmodial activity ofArtemisia annua plant cell cultures. Plant Cell Rep. 8:425–428; 1989.

    Article  Google Scholar 

  19. Whetmore, R. H.; Rier, J. P. Experimental induction of vascular tissue in callus of angiosperms. Am. J. Bot. 50:418–430; 1963.

    Article  Google Scholar 

  20. Whipkey, A.; Simon, J. E.; Charles, D. J., et al. In vitro production of artemisinin fromArtemisia annua. Hortscience 26:728; 1991.

    Google Scholar 

  21. Xu, X. X.; Zhu, J.; Huang, D-Z., et al. Total synthesis of arteannuin and deoxyarteannuin. Tetrahedron 42:819–828; 1986.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basile, D.V., Akhtari, N., Durand, Y. et al. Toward the production of artemisinin through tissue culture: Determining nutrient-hormone combinations suitable for cell suspension cultures. In Vitro Cell Dev Biol - Plant 29, 143–147 (1993). https://doi.org/10.1007/BF02632286

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632286

Key words

Navigation