Skip to main content
Log in

Organogenesis in leafy spurge (Euphorbia esula L.)

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

All parts of leafy spurge seedlings can be regenerated when isolated and placed onto B5 medium. One-centimeter isolated hypocotyl segments were tested successfully for their usefulness as a bioassay system by comparing the response of auxins, herbicides, and cytokinins. Indole-3-acetic acid (IAA) was the most effective auxin to stimulate root formation. IAA was effective whether the hypocotyl segments remained on the same medium up to 60 days, or the segments were transferred to basal media after 2 or 5 days (pulse treatment). Pulse treatments with the other auxins resulted in stimulation of root formation; continuous or 5-day pulses of higher concentrations of indole-3-butyric acid,α-naphthaleneacetic acid and especially 2,4-dichlorophenoxyacetic acid and picloram formed excessive callus instead of roots. Picloram did not stimulate root formation, whether the treatment was continuous or pulse-treated. No roots formed with continuous picloram at 0.1 mg/liter or greater, but transfer to basal media did result in root and shoot formation at about 50% of the number formed on the controls. Lesser picloram concentrations had no effect. Shoots formed readily on untreated (control) segments, but continuous treatment with all three cytokinins, kinetin, zeatin, and zeatin riboside, increased the numbers of shoots about equally. Root formation was inhibited by the cytokinins at the higher concentrations (0.1 to 0.2 mg/liter). With the exception of a 5-day pulse of 0.04 mg/liter IAA, the auxins did not stimulate shoot formation, but generally inhibited shoot formation, even in pulse-treated cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreae, W. A. Uptake and metabolism of indoleacetic acid, naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid by pea root segments in relation to growth inhibition during and after auxin application. Can. J. Bot. 45:737–753; 1967.

    CAS  Google Scholar 

  • Ashton, F. M.; Crafts, A. S. Mode of action of herbicides, 2nd ed. New York: John Wiley & Sons; 1981.

    Google Scholar 

  • Beasley, C. A. Anatomy and bud formation of subterranean parts of leafy spurge (Euphorbia esula L.). Brookings: South Dakota State Univ. 1964; Thesis.

    Google Scholar 

  • Bandurski, R. S.; Schulze, A.; Domagalski, W., et al. Synthesis and metabolism of conjugates of indole-3-acetic acid. In: Schreiber, K.; Schutte, H. R.; Sembdner, G., eds. Conjugated plant hormones—structure, metabolism and function. Berlin: Deutscher Verlag der Wissenschaften; 1987:11–20.

    Google Scholar 

  • Cohen, J. D.; Bandurski, R. S. Chemistry and physiology of the bound auxins. Annu. Rev. Plant Physiol. 33:403–430; 1982.

    Article  CAS  Google Scholar 

  • Collins, G. B.; Vian, W. E.; Phillips, G. C. Use of 4-amino-3,5,6-trichloropicolinic acid as an auxin source in plant tissue cultures. Crop Sci. 18:286–288; 1978.

    Article  CAS  Google Scholar 

  • Davidonis, G. H.; Hamilton, R. H.; Mumma, R. O. Comparative metabolism of 2,4-D in cotyledon and leaf callus from two varieties of soybeanGlycine-max. Plant Physiol. 65:94–97; 1980.

    PubMed  CAS  Google Scholar 

  • Davis, D. G.; Olson, P. A. Organogenesis in cell suspensions and hypocotyl segments of accessions of leafy spurge (Euphorbiacea). 14 Int. Botanical Congress, Berlin, Germany. Berlin-Dahlem: Botanical Museum; 1987; abstract 2-102c-4.

    Google Scholar 

  • Davis, D. G.; Olson, P. A.; Stolzenberg, R. L. Organogenesis in cell cultures of leafy spurge (Euphorbiaceae) accessions from Europe and North America. Plant Cell Rep. 7:253–256; 1988.

    Article  Google Scholar 

  • Davis, D. G.; Wergin, W. P.; Dusbabek, K. E. Effects of organic solvents on growth and ultrastructure of plant cell suspensions. Pestic. Biochem. Physiol. 8:84–97; 1978.

    Article  CAS  Google Scholar 

  • Epstein, E.; Lavee, S. Conversion of indole-3-butyric acid to indole-3-acetic acid by cuttings of grapevine (Vitis vinifera) and olive (Olea europea). Plant Cell Physiol. 25:697–703; 1984.

    CAS  Google Scholar 

  • Epstein, E.; Nissen, S. J.; Sutter, E. G. Indole-3-acetic acid and indole-3-butyric acid in tissues of carrot inoculated withAgrobacterium rhizogenes. J. Plant Growth Regul. 10:97–100; 1991.

    Article  CAS  Google Scholar 

  • Evenson, K. J.; Galitz, D. S.; Davis, D. G. The relationship of nitrogen source andin vivo nitrate reductase activity to root formation inEuphorbia esula cell suspension cultures. Plant Cell Rep. 7:361–364; 1988.

    Article  CAS  Google Scholar 

  • Gamborg, O. L.; Davis, B. P.; Stahlhut, R. W. Somatic embryogenesis in cell cultures ofGlycine species. Plant Cell Rep. 2:209–212; 1983.

    Article  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:148–151; 1968.

    Article  Google Scholar 

  • Goren, R.; Bukovac, M. J. Mechanism of naphthaleneacetic acid conjugation. No effect of ethylene. Plant Physiol. 51:907–913; 1973.

    PubMed  CAS  Google Scholar 

  • Hamaker, J. W.; Johnston, H.; Martin, R. T., et al. A picolinic acid derivative: a plant growth regulator. Science 141:363; 1963.

    Article  CAS  PubMed  Google Scholar 

  • Hangarter, R. P.; Good, N. E. Evidence that IAA conjugates are slow-release sources of free IAA in plant tissue. Plant Physiol. 68:1424–1427; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L-C.; Chi, D-L. Pivotal roles of picloram and gelrite in banana callus culture. Environ. Exp. Bot. 28:249–258; 1988.

    Article  Google Scholar 

  • Kartha, K. K.; Gamborg, O. L.; Constabel, F., et al. Regeneration of cassava plants from apical meristems. Plant Sci. Lett. 2:107–113; 1974.

    Article  CAS  Google Scholar 

  • Kefford, N. P.; Caso, O. H. A potent auxin with unique chemical structure—4-amino-3,5,6-trichloropicolinic acid. Bot. Gaz. 127:159–163; 1966.

    Article  CAS  Google Scholar 

  • Lym, R. G.; Messersmith, C. G. Cost-effective long term leafy spurge (Euphorbia esula) control with herbicides. Weed Technol. 4:635–641; 1990.

    CAS  Google Scholar 

  • Nissen, S. J.; Foley, M. E. Correlative inhibition and dormancy in root buds of leafy spurge (Euphorbia esula). Weed Sci. 35:155–159; 1987.

    CAS  Google Scholar 

  • Smulders, M. J. M.; Van De Ven, E. T. W. M.; Croes, A. F., et al. Metabolism of 1-naphthaleneacetic acid in explants of tobacco: evidence for release of free hormone from conjugates. J. Plant Growth Regul. 9:27–34; 1990.

    Article  CAS  Google Scholar 

  • Watson, A. K., editor. Leafy spurge, Monograph series number 3. Champaign, IL: Weed Science Society of America; 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, D.G., Olson, P.A. Organogenesis in leafy spurge (Euphorbia esula L.). In Vitro Cell Dev Biol - Plant 29, 97–101 (1993). https://doi.org/10.1007/BF02632278

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632278

Key words

Navigation