Advertisement

Regulatory issues for commercialization of tomatoes with an antisense polygalacturonase gene

  • Keith Redenbaugh
  • Ted Berner
  • Don Emlay
  • Bill Frankos
  • William Hiatt
  • Cathy Houck
  • Matt Kramer
  • Lori Malyj
  • Belinda Martineau
  • Nancy Rachman
  • Larisa Rudenko
  • Rick Sanders
  • Ray Sheehy
  • Roger Wixtrom
Genetic Transformation

Summary

Significant progress has been made in development of transgenic plants containing agriculturally useful genes. Concurrent with scientific advances has been development of a regulatory infrastructure within the U.S. Department of Agriculture (USDA) for assessing safety of controlled release of genetically engineered plants into the environment, as well as creation of a food policy by the Food and Drug Administration (FDA). Field trials and safety assessments of tomato containing an antisense polygalacturonase gene (FLAVR SAVR™ tomato) have been conducted. A detailed safety analysis of thekan r selectable marker was also done. Based on these data plus nutritional measurements, lack of changes in levels of natural toxins, and lack of any unintended changes, we have requested that the USDA and FDA determine that this genetically engineered tomato is safe for release into the environment and human consumption.

Key words

tomato Lycopersicon antisense polygalacturonase USDA FDA safety assessment of transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. IMS-Imspact pharmaceutical database report. Plymouth Meeting, PA: IMS America; 1990a.Google Scholar
  2. Anonymous. USP XXII, NF XVII, U.S. pharmacopeial convention. U.S. Pharmacopeia (USP), The National Formulary (NF). Easton, PA: Mack Printing Co.; 1990b.Google Scholar
  3. Anonymous. Food intakes: Individuals in 48 states, year 1977–1978; Hyattsville, MD: U.S. Department of Agriculture Consumer Nutrition Division; 1983.Google Scholar
  4. Anonymous. Toxicological principles for the safety assessments of direct food additives and color additives used in food. Washington, DC: U.S. Food and Drug Administration, Bureau of Foods; 1982.Google Scholar
  5. Beck, E.; Ludwig, G.; Auerswald, E., et al. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–336; 1982.PubMedCrossRefGoogle Scholar
  6. Blaese, R.; Anderson, W. Unpublished submission of ADA human gene therapy clinical protocol: treatment of severe combined immunodeficiency disease (SCID) due to adenosine deaminase (ADA) deficiency with autologous lymphocytes transduced with a human ADA gene. Submitted for IRB/IBC/RAC/FDA approval. Memorandum from the Department of Health and Human Services, National Institutes of Health, and National Heart, Lung, and Blood Institute to the Office of Recombinant DNA Activities; 1990.Google Scholar
  7. Davies, J. Aminoglycoside-aminocyclitol antibiotics and their modifying enzymes. In: Lorian, V., ed. Antibiotics in laboratory medicine. Baltimore, MD: William & Wilkins; 1986:790–809.Google Scholar
  8. Davies, J.; Smith, D. Plasmid-determined resistance to antimicrobial agents. Ann. Rev. Microbiol. 32:469–518; 1978.CrossRefGoogle Scholar
  9. Ehrlich, S. Illegitimate recombination in bacteria. In: Berg, D.; Howe, M., ed. Mobile DNA. Washington, DC: American Society for Microbiology; 1989:799–832.Google Scholar
  10. Garfinkel, D.; Simpson, R.; Ream, L., et al. Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis. Cell 27:143–153; 1981.PubMedCrossRefGoogle Scholar
  11. Gould, W. Tomato production, processing and quality evaluation. Westport, CT: Avi Press; 1983:245–266.Google Scholar
  12. Guyton, A. Textbook of medical physiology, 7th ed. Philadelphia, PA: W. B. Saunders Company; 1986.Google Scholar
  13. Hiatt, W.; Kramer, M.; Sheehy, R. The application of antisense RNA technology to plants. In: Setlow, J., ed. Genetic engineering, principles and methods, vol. 11. New York: Plenum Press; 1989:49–63.Google Scholar
  14. Hoskins, L. Host and microbial DNA in the gut lumen. J. Infect. Dis. 137:694–698; 1978.PubMedGoogle Scholar
  15. Juskevich, J.; Guyer, C. Bovine growth hormone: human food safety evaluation. Science 249:875–884; 1990.PubMedCrossRefGoogle Scholar
  16. Kasid, A.; Morecki, S.; Aebersold, P., et al. Human gene transfer: characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer to man. Proc. Natl. Acad. Sci. USA 87:473–477; 1990.PubMedCrossRefGoogle Scholar
  17. Koncz, C.; Martini, N.; Mayerhofer, R., et al. High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86:8467–8471; 1989.PubMedCrossRefGoogle Scholar
  18. Kramer, M.; Sanders, R.; Bolkan, H., et al. Post-harvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: processing, firmness and disease resistance. Post Harvest Biol. Technol. 1:241–255; 1992.CrossRefGoogle Scholar
  19. Kramer, M.; Sanders, R.; Sheehy, R., et al. Field evaluation of tomatoes with reduced polygalacturonase by antisense RNA. In: Bennett, A.; O’Neill, S., ed. Horticultural biotechnology. New York: Wiley-Liss, Inc. 1990:347–355.Google Scholar
  20. Kramer, M.; Sheehy, R.; Hiatt, W. Progress towards the genetic engineering of tomato fruit softening. Trends Biotechnol. 7:191–194; 1989.CrossRefGoogle Scholar
  21. Nevins, D. Why tomato biotechnology? A potential to accelerate the applications. In: Nevins, D.; Jones, R., ed. Tomato biotechnology, vol. 4. New York: Alan R. Liss; 1987:3–14.Google Scholar
  22. Pao, E.; Fleming, K.; Guenther, P., et al. Foods commonly eaten by individuals: amounts per day and per eating occasion. Washington, DC: USDA Consumer Nutrition Center; Home Economics Research Rep. no. 44; 1982.Google Scholar
  23. Radke, S.; Andrews, B.; Moloney, M., et al. Transformation ofBrassica napus L. usingAgrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor. Appl. Genet. 75:685–694; 1988.CrossRefGoogle Scholar
  24. Sambrook, J.; Fritsch, E.; Maniatis, T. Molecular cloning a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.Google Scholar
  25. Sheehy, R.; Kramer, M.; Hiatt, W. Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc. Natl. Acad. Sci. USA 85:8805–8809; 1988.PubMedCrossRefGoogle Scholar
  26. Sheehy, R.; Pearson, J.; Brady, C., et al. Molecular characterization of tomato fruit polygalacturonase. Mol. Gen. Genet. 208:30–36; 1987.CrossRefGoogle Scholar
  27. Stent, G.; Calender, R. Efficiency of transformation. In: Molecular genetics: an introductory narrative. San Francisco: W.H. Freeman and Company; 1978:191–193.Google Scholar
  28. Tigchelaar, E.; McGlasson, W.; Buescher, R. Genetic regulation of tomato fruit ripening. HortScience 13:508–513; 1978.Google Scholar

Copyright information

© Tissue Culture Association 1993

Authors and Affiliations

  • Keith Redenbaugh
    • 1
  • Ted Berner
    • 2
  • Don Emlay
    • 1
  • Bill Frankos
    • 2
  • William Hiatt
    • 1
  • Cathy Houck
    • 1
  • Matt Kramer
    • 1
  • Lori Malyj
    • 1
  • Belinda Martineau
    • 1
  • Nancy Rachman
    • 2
  • Larisa Rudenko
    • 2
  • Rick Sanders
    • 1
  • Ray Sheehy
    • 1
  • Roger Wixtrom
    • 2
  1. 1.Calgene, Inc.Davis
  2. 2.EnvironArlington

Personalised recommendations