Skip to main content
Log in

Transformation of maize using microprojectile bombardment: An update and perspective

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Using microprojectile bombardment of maize suspension cultures and bialaphos selection, transformed embryogenic calli have been recovered in numerous independent experiments. Fertile transgenic plants have been regenerated from several transformed callus lines. Stable inheritance and expression ofbar and functional activity of the enzyme phosphinothricin acetyl transferase were observed in three subsequent generations of transformed plants. Evidence to date indicates that the transformation process and the presence of the foreign gene per se do not detrimentally influence either plant vigor or fertility. This represents a practical method for introducing foreign genes into maize, which may be applicable to other monocot species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bevan, M. W.; Flavell, R. B.; Chilton, M. D. A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187; 1983.

    Article  CAS  Google Scholar 

  • Bytebier, B.; Deboeck, F.; De Greve, H., et al. T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinallis. Proc. Natl. Acad. Sci. USA 84:5345–5349; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P.; Swain, W. F. Cotransformation frequencies of foreign genes in soybean cell cultures. Theor. Appl. Genet. 79:337–341; 1990.

    Article  CAS  Google Scholar 

  • Crossway, A.; Oakes, J. V.; Irvine, J. M., et al. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts. Mol. Gen. Genet. 202:179–185; 1986.

    Article  CAS  Google Scholar 

  • Datta, S. K.; Peterhans, A.; Datta, K., et al. Genetically engineered fertile indica rice recovered from protoplasts. Bio/Technol. 8:736–740; 1990.

    Article  CAS  Google Scholar 

  • de la Pena, A.; Lorz, H.; Schell, J. Transgenic plants obtained by injecting DNA into young floral tillers. Nature 325:274–276; 1987.

    Article  Google Scholar 

  • Denecke, J.; Gosselle, V.; Botterman, J., et al. Quantitative analysis of transiently expressed genes in plant cells. Methods Mol. Cell Biol. 1:19–27; 1989.

    CAS  Google Scholar 

  • de Wet, J. M. J.; Berquist, R. R.; Harlan, J. R., et al. Exogenous gene transfer in maize (Zea mays) using DNA-treated pollen. In: Chapman, G. P.; Mantell, S. H.; Daniels, W., eds. Experimental manipulation of ovule tissue. London:Longman; 1985:197–201.

    Google Scholar 

  • Donn, G.; Niles, M.; Morocz, S. Abstracts VIIth International Congress on Plant Tissue and Cell Culture. Amsterdam: International Association Plant Tissue Culture; 1990:53.

    Google Scholar 

  • Fraley, R. T.; Rogers, S. G.; Horsch, R. B., et al. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80:4803–4807; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Fransz, P. F.; de Ruijter, N. C. A.; Schel, J. H. N. Isozymes as biochemical and cytochemical markers in embryogenic callus cultures of maize (Zea mays L.). Plant Cell Rep. 8:67–70; 1989.

    Article  CAS  Google Scholar 

  • Fromm, M.; Taylor, L. P.; Walbot, V. Stable transformation of maize after gene transfer by electroporation. Nature 319:791–793; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M.; Morrish, F.; Armstrong, C., et al. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technol. 8:833–839; 1990.

    Article  CAS  Google Scholar 

  • Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L., et al. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Green, C. E.; Armstrong, C. L.; Anderson, P. C. Somatic cell genetic systems in corn. In: Downey, K.; Voellmy, R. W.; Ahmad, F., et al., eds. Advances in gene technology: molecular genetics of plants and animals. New York:Academic Press; 1983:147–157.

    Google Scholar 

  • Hauptmann, R. M.; Vasil, V.; Ozias-Aikins, P., et al. Evaluation of selectable markers for obtaining stable transformants in the Gramineae. Plant Physiol. 86:602–606; 1988.

    PubMed  CAS  Google Scholar 

  • Hayashimoto, A.; Li, Z.; Murai, N. A polyethylene glycol-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiol. 93:857–863; 1990.

    PubMed  CAS  Google Scholar 

  • Heberle-Bors, E.; Moreno, R. M. B.; Alwin, A., et al. Transformation of pollen. In: Nijkamp, H. J. J.; van der Plas, L. H. W.; van Aartrijk, J., eds. Progress in plant cellular and molecular biology. Dordrecht: Kluwer Academic Publications. 1990:244–251.

    Google Scholar 

  • Herrera-Estrella, L.; De Block, M.; Messens, E., et al. Chimaeric genes as dominant selectable markers in plant cells. EMBO J. 2:987–995; 1983.

    PubMed  CAS  Google Scholar 

  • Hooykaas, P. J. J. Transformation of plant cells by Agrobacterium. Plant Mol. Biol. 13:327–336; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R. A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405; 1987.

    CAS  Google Scholar 

  • Klein, T. M.; Wolf, E. D.; Wu, R., et al. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–78; 1987.

    Article  CAS  Google Scholar 

  • Klein, T. M.; Grodziel, T.; Fromm, M. E., et al. Factors influencing gene delivery intoZea mays cells by high velocity microprojectiles. Bio/Technol. 6:559–563; 1988.

    Article  CAS  Google Scholar 

  • Ludwig, S. E.; Bowen, B.; Beach, L., et al. A regulatory gene as a novel visible marker for maize transformation. Science 247:449–450; 1990.

    Article  PubMed  Google Scholar 

  • Luo, Z. X.; Wu, R. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol. Biol. Rep. 6:165–174; 1988.

    CAS  Google Scholar 

  • Luo, Z. X.; Wu, R. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol. Biol. Rep. 7:69–77; 1989.

    Google Scholar 

  • Lyznik, L. A.; Ryan, R. D.; Ritchie, S. W., et al. Stable cotransformation of maize protoplasts withgusA andneo genes. Plant Mol. Biol. 13:151–161; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Matousek, J.; Tupy, J. The release of nucleases from tobacco pollen. Plant Sci. Lett. 30:83–89; 1983.

    Article  CAS  Google Scholar 

  • Miki, B.; Iyers, V. N.; Reich, T. J. Transformation of higher plant cells by intranuclear microinjection. In: Green, C. E.; Somers, D. A.; Hackett, W. P., et al., eds. Plant tissue and cell culture. Proceedings of the VIIth international congress on plant tissue and cell culture. New York: Alan R. Liss, Inc.; 1987:435–446.

    Google Scholar 

  • McCabe, D. E.; Swain, W. F.; Martinell, B. J. Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technol. 6:923–926; 1988.

    Article  Google Scholar 

  • Morocz, S.; Donn, G.; Nemeth, J., et al. Plant regeneration from haploid and diploidZea mays L. cultures. Abstracts VIIth international congress on plant tissue and cell culture. Amsterdam: International Association Plant Tissue Culture; 1990:28.

    Google Scholar 

  • Murakami, T.; Anzai, H.; Imai, S., et al. The bialaphos biosynthesis genes ofStreptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol. Gen. Genet. 205:42–50; 1986.

    Article  CAS  Google Scholar 

  • Negrutiu, I.; Heberle-Bors, E.; Potrykus, I. Attempts to transform for kanamycin resistance in mature pollen of tobacco. In: Mulcahy, D. L.; Bergamini-Mulcahy, G., et al. eds. Biotechnology and ecology of pollen. New York: Springer-Verlag; 1986:65–70.

    Google Scholar 

  • Neuhaus, G., Spangenburg, G.; Mittelsten Scheid, O., et al. Transgenic rapeseed plants obtained by microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet. 75:30–36; 1987.

    Article  Google Scholar 

  • Ohta, Y. High-efficiency transformation of maize by a mixture of pollen and exogenous DNA. Proc. Natl. Acad. Sci. USA 83:715–719; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski, J.; Shillito, R. D.; Saul, M., et al. Direct gene transfer to plants. EMBO J. 3:2717–2722; 1984.

    PubMed  CAS  Google Scholar 

  • Peng, J.; Lyznik, L. A.; Lee, L., et al. Co-transformation of indica rice protoplasts withgusA andneo genes. Plant Cell Rep. 9:168–172; 1990.

    Article  CAS  Google Scholar 

  • Pfahler, P. L. In vitro germination and pollen tube growth of maize (Zea mays L.) pollen. I. Calcium and boron effects. Can. J. Bot. 45:836–845; 1967.

    Google Scholar 

  • Potrykus, I. Gene transfer to cereals: an assessment. Trends Biotechnol. 7:269–273; 1989.

    Article  Google Scholar 

  • Prioli, L. M.; Sondahl, M. R. Plant regeneration and recovery of fertile plants from protoplasts of maize (Zea mays L). Bio/Technol. 7:589–594; 1989.

    Article  Google Scholar 

  • Prols, M.; Schell, J.; Steinbiss, H. H. Critical evaluation of electromediated gene transfer and transient expression in plant cells. In: Neumann, E.; Sowers, A. E.; Jordon, C. A., eds. Electroporation and electrofusion in cell biology. New York: Plenum Press; 1989:367–375.

    Google Scholar 

  • Reich, T. J.; Iyer, V. N.; Scobie, B., et al. A detailed procedure for the intranuclear microinjection of plant protoplasts. Can. J. Bot. 64:1255–1258; 1987.

    Article  Google Scholar 

  • Rhodes, C. A.; Lowe, K. S.; Ruby, K. L. Plant regeneration from protoplasts isolated from embryogenic maize cell cultures. Bio/Technol 6:56–60; 1988a.

    Article  Google Scholar 

  • Rhodes, C. A.; Pierce, D. A.; Mettler, I. J., et al. Genetically transformed maize plants from protoplasts. Science 240:204–207; 1988b.

    Article  PubMed  CAS  Google Scholar 

  • Sanford, J. C.; Skubik, K. A.; Reisch, B. I. Attempted pollen-mediated plant transformation employing genomic donor DNA. Theor. Appl. Genet. 69:571–574; 1985.

    Article  CAS  Google Scholar 

  • Schell, J. S. Transgenic plants as tools to study the molecular organization of plant genes. Science 273:1176–1182; 1987.

    Article  Google Scholar 

  • Shillito, R. D.; Carswell, G. K.; Johnson, C. M., et al. Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technol. 7:581–587; 1989.

    Article  Google Scholar 

  • Shimamoto, K.; Terada, R.; Izawa, T., et al. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338:274–276; 1989.

    Article  CAS  Google Scholar 

  • Spencer, T. M.; Gordon-Kamm, W. J.; Daines, R. J., et al. Bialaphos selection of stable transformants from maize cell culture. Theor. Appl. Genet. 79:625–631; 1990.

    Article  CAS  Google Scholar 

  • Tachibana, K.; Watanabe, T.; Sekizawa, Y., et al. Inhibition of glutamine synthetase and quantitative changes in free amino acids in shoots of bialaphos-treated Japanese barnyard millet. J. Pesticide Sci. 11:27–31; 1986a.

    CAS  Google Scholar 

  • Tachibana, K.; Watanabe, T.; Sekizawa, Y., et al. Accumulation of ammonia in plants treated with bialaphos. J. Pesticide Sci. 11:33–37; 1986b.

    CAS  Google Scholar 

  • Thompson, C. J.; Movva, N. R.; Tizard, R., et al. Characterization of the herbicide-resistance genebar fromStreptomyces hygroscopicus. EMBO J. 6:2519–2523; 1987.

    PubMed  CAS  Google Scholar 

  • Tomes, D. T. Transformation in corn: nonsexual gene transfer. In: Dudley, J., ed. Annual meeting proceedings of 26th annual corn breeders school. Champaign, II: University of Illinois Press; 1990:7–9.

    Google Scholar 

  • Twell, D.; Klein, T. M.; Fromm, M. E., et al. Transient expression of chimeric genes delivered into pollen by microprojectile bombardment. Plant Physiol. 91:1270–1274; 1989.

    PubMed  CAS  Google Scholar 

  • Wang, Y.-C.; Klein, T. M.; Fromm, M., et al. Transient expression of foreign genes in rice, wheat and soybean cells following particle bombardment. Plant Mol. Biol. 11:433–439; 1988.

    Article  CAS  Google Scholar 

  • Vasil, V.; Vasil, I. K. Plant regeneration from friable embryogenic callus and cell suspension cultures ofZea mays L. J. Plant Physiol. 124:399–408; 1986.

    CAS  Google Scholar 

  • Zhu, Z.; Hughes, K. W.; Huang, L., et al. Cationic liposome-mediated transformation of rice protoplasts. Focus 12:41–44; 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in the Session-in-Depth Genetic Transformation and Genetic Analysis Using Microprojectile Bombardment at the Annual Meeting of the Tissue Culture Association, Houston, Texas, June 10–13, 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon-Kamm, W.J., Spencer, T.M., O’Brien, J.V. et al. Transformation of maize using microprojectile bombardment: An update and perspective. In Vitro Cell Dev Biol - Plant 27, 21–27 (1991). https://doi.org/10.1007/BF02632057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02632057

Key words

Navigation