Skip to main content
Log in

Stable, position-related responses to retinoic acid by chick limb-bud mesenchymal cells in serum-free cultures

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Retinoic acid (RA) has dramatic effects on limb-skeletal patterning in vivo and may well play a pivotal role in normal limb morphogenesis. RA’s effects on the expression of pattern-related genes in the developing limb are probably mediated by cytoplasmic RA-binding proteins and nuclear RA-receptors. Little is known, however, about how RA modifies specific cellular behaviors required for skeletal morphogenesis. Earlier studies supported a role for regional differences in RA concentration in generating the region-specific cell behaviors that lead to pattern formation. The present study explores the possibility that position-related, cell-autonomous differences in the way limb mesenchymal cells respond to RA might have a role in generating pattern-related cell behavior. Mesenchymal cells from different proximodistal regions of stage 21–22 and 23–24 chick wing-buds were grown in chemically defined medium and exposed to 5 or 50 ng/ml of RA for 4 days in high-density microtiter cultures. The effects of RA on chondrogenesis in these cultures clearly differed depending on the limb region from which the cells were isolated. Regional differences in RA’s effects on growth over 4 days in these cultures were less striking. The region-dependent responses of these cells to RA proved relatively stable in culture despite ongoing cytodifferentiation. This serum-free culture model will be useful in exploring the mechanisms underlying the region-dependent responsiveness of these cells to RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archer, C. W.; Langille, R. M.; Teran, M. A. F., et al. Myogenic potential of chick wing-bud mesenchyme in micromass culture. Anat. Embryol. 185:299–306; 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Biddulph, D. M.; Sawyer, L. M.; Dozier, M. M. Chondrogenesis in chick limb mesenchyme in vitro derived from distal limb bud tips: changes in cyclic AMP and in prostaglandin responsiveness. J. Cell. Physiol. 136:81–87; 1988.

    Article  PubMed  CAS  Google Scholar 

  3. Boylan, J. F.; Gudas, L. J. The level of CRABP-I expression influences the amounts and types of all-trans retinoic acid metabolites in F9 teratocarcinoma stem cells. J Biol. Chem. 267:21486–21491; 1992.

    PubMed  CAS  Google Scholar 

  4. Brunk, C. F.; Jones, K. C.; James, T. W. Assay for nanogram quantities of DNA in cellular homogenates. Anal. Biochem. 92:497–500; 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Caplan, A. I. Effects of the nicotinamide-sensitive teratogen 3-acetylpyridine on chick limb-bud cells in culture. Exp. Cell Res. 62:341–355; 1970.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, Y. P.; Huang, L.; Russo, A. F., et al. Retinoic acid is enriched in Hensen’s node and is developmentally regulated in the early chicken embryo. Proc. Natl. Acad. Sci. USA 89:10056–10059; 1992.

    Article  PubMed  CAS  Google Scholar 

  7. Coelho, C. N. D.; Sumoy, L.; Kosher, R. A., et al. GHox-7: a chicken homeobox-containing gene expressed in a fashion consistent with a role in patterning events during embryonic chick development. Differentiation 49:85–92; 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Dollé, P.; Ruberte, E.; Leroy, P., et al. Retinoic acid receptors and cellular retinoid binding proteins. I. A systematic study of their differential pattern of transcription during mouse organogenesis. Development 110:1133–1151; 1990.

    Google Scholar 

  9. Eichele, G. Retinoids and vertebrate limb pattern formation. Trends Genet. 5:246–251; 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science 240:889–895; 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Fiorella, P. D.; Napoli, J. L. Expression of cellular retinoic acid binding protein (CRABP) inEscherichia coli. Characterization and evidence that holo-CRABP is a substrate in retinoic acid metabolism. J. Biol. Chem. 266:16572–16579; 1991.

    PubMed  CAS  Google Scholar 

  12. Greene, S.; Chambon, P. Nuclear receptors enhance our understanding of transcription regulation. Trends Genet. 4:309–314; 1988.

    Article  Google Scholar 

  13. Hamburger, V.; Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92; 1951.

    Article  Google Scholar 

  14. Hassell, J. R.; Horigan, E. A. Chondrogenesis: a model developmental system for measuring the teratogenic potential of compounds. Teratogen. Carcinogen. Mutagen. 2:325–331; 1982.

    Article  CAS  Google Scholar 

  15. Ide, H.; Aono, H. Retinoic acid promotes proliferation and chondrogenesis in the distal mesodermal cells of chick limb bud. Dev. Biol. 130:767–773; 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Kochhar, D. M. Teratogenic activity of retinoic acid. Acta Pathol. Microbiol. Scand. 70:398–404; 1967.

    PubMed  CAS  Google Scholar 

  17. Kochhar, D. M. Limb development in mouse embryos. 1. Analysis of teratogenic effects of retinoic acid. Teratology 7:289–298; 1973.

    Article  CAS  Google Scholar 

  18. Langille, R. M.; Paulsen, D. F.; Solursh, M. Differential effects of physiological concentrations of retinoic acid in vitro on chondrogenesis and myogenesis in chick craniofacial mesenchyme. Differentiation 40:84–92; 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, J.; Tickle, C. Retinoic acid and pattern formation in the developing chick wing: SEM and quantitative studies of early effects on the apical ectodermal ridge and bud outgrowth. J. Embryol. Exp. Morphol. 90:139–169; 1985.

    PubMed  CAS  Google Scholar 

  20. Leonard, C. M.; Bergman, M.; Frenz, D. A., et al. Abnormal ambient glucose levels inhibit proteoglycan core protein gene expression and reduce proteoglycan accumulation during chondrogenesis: possible mechanism for teratogenic effects of maternal diabetes. Proc. Natl. Acad. Sci. USA 86:10113–10117; 1989.

    Article  PubMed  CAS  Google Scholar 

  21. Lev, R.; Spicer, S. S. Specific staining of sulfate groups with alcian blue at low pH. J. Histochem. Cytochem. 12:309; 1964.

    PubMed  CAS  Google Scholar 

  22. Maden, M.; Ong, D. E.; Summerbell, D., et al. Spatial distribution of cellular protein binding to retinoic acid in the chick limb bud. Nature 335:733–735; 1988.

    Article  PubMed  CAS  Google Scholar 

  23. Mangelsdorf, D. J.; Ong, E. S.; Duck, J. A., et al. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature 345:224–229; 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Napoli, J. L.; Posch, K. P.; Fiorella, P. D., et al. Physiological occurrence, biosynthesis and metabolism of retinoic acid: evidence for roles of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the pathway of retinoic acid homeostasis. Biomed. Pharmacother. 45:131–143; 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Newman, S. A. Lineage and pattern in the developing wing bud. In: Ede, D. A.; Hinchliffe, J. R.; Balls, M., eds. Vertebrate limb and somite morphogenesis. Cambridge: Cambridge University Press; 1977: 181–200.

    Google Scholar 

  26. Newman, S. A.; Pautou, M.-P.; Kieny, M. The distal boundary of myogenic primordia in chimeric avian limb buds and its relation to an accessible population of cartilage progenitor cells. Dev. Biol. 84:440–448; 1981.

    Article  PubMed  CAS  Google Scholar 

  27. Noji, S.; Nohno, T.; Koyama, E., et al. Retinoic acid induces polarizing activity but is unlikely to be a morphogen in the chick limb bud. Nature 350:83–86; 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Paulsen, D. F.; Parker, C. L.; Finch, R. A. Region-dependent capacity for limb chondrogenesis: patterns of chondrogenesis in cultures from different regions of the developing chick wing. Differentiation 14:159–165; 1979.

    Article  PubMed  CAS  Google Scholar 

  29. Paulsen, D. F.; Langille, R. M.; Dress, V., et al. Selective stimulation of in vitro limb-bud chondrogenesis by retinoic acid. Differentiation 39:123–130; 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Paulsen, D. F.; Solursh, M. Microtiter micromass cultures of limb-bud mesenchymal cells. In Vitro Cell. Dev. Biol. 24:138–147; 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Paulsen, D. F.; Pang, L. Position-related effects of retinoic acid (RA) on chick limb-bud chondrogenesis in serum-free microculture. Anat. Rec. 226:78A; 1990.

    Google Scholar 

  32. Paulsen, D. F.; Chen, W.-D.; Pang, L., et al. Unique responsiveness of distal anterior chick wing-bud mesenchyme to retinoic acid and serum in vitro. Anat. Rec. 229:68A; 1991.

    Google Scholar 

  33. Sakai, A.; Langille, R. M. Differential and stage dependent effects of retinoic acid on chondrogenesis and synthesis of extracellular matrix macromolecules in chick craniofacial mesenchyme in vitro. Differentiation 52:19–32; 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Saunders, J. W., Jr. The proximo-distal sequence of the origin of the parts of the chick wing and the role of the ectoderm. J. Exp. Zool. 108:363–404; 1948.

    Article  Google Scholar 

  35. Schofield, J. N.; Rowe, A.; Brickell, P. M. Position-dependence of retinoic acid receptor-β gene expression in the chick limb bud. Dev. Biol. 152:344–353; 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Slack, J. M. W. We have a morphogen! Nature 327:553–554; 1987.

    Article  PubMed  CAS  Google Scholar 

  37. Smith, S. M.; Eichele, G. Temporal and regional differences in the expression pattern of distinct retinoic acid receptor-β transcripts in the chick embryo. Development 111:245–252; 1991.

    PubMed  CAS  Google Scholar 

  38. Sulik, K. K.; Dehart, D. B. Retinoic acid induced limb malformations resulting from apical ectodermal cell death. Teratology 37:527–537; 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Summerbell, D. The effect of local application of retinoic acid to the anterior margin of the developing chick limb. J. Embryol. Exp. Morphol. 78:269–289; 1984.

    Google Scholar 

  40. Summerbell, D.; Wolpert, L. Cell density and cell division in the early morphogenesis of the chick wing. Nature 239:24–26; 1972.

    CAS  Google Scholar 

  41. Suzuki, H. R.; Padanilam, B. J.; Vitale, E., et al. Repeating developmental expression of G-Hox 7, a novel homeobox containing gene in the chicken. Dev. Biol. 148:375–388; 1991.

    Article  PubMed  CAS  Google Scholar 

  42. Thaller, C.; Eichele, G. Identification and spatial distribution of retinoids in the developing chick limb. Nature 327:625–628; 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Tickle, C.; Alberts, B.; Wolpert, L., et al. Local application of retinoic acid to the limb buds mimics the action of the polarizing region. Nature 296:564–566; 1982.

    Article  PubMed  CAS  Google Scholar 

  44. Tickle, C.; Lee, J.; Eichele, G. A quantitative analysis of the effect of all-trans retinoic acid on the pattern of chick wing development. Dev. Biol. 109:82–95; 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Tickle, C.; Crawley, A.; Farrar, J. Retinoic acid application to chick wing buds leads to a dose-dependent reorganization of the apical ectodermal ridge that is mediated by the mesenchyme. Development 106:691–705; 1989.

    PubMed  CAS  Google Scholar 

  46. Umansky, R. The effect of cell population density on the developmental fate of reaggregating mouse limb-bud mesenchyme. Dev. Biol. 13:31–56; 1966.

    Article  PubMed  CAS  Google Scholar 

  47. Wanek, N.; Gardiner, D. M.; Muneoka, K., et al. Conversion by retinoic acid of anterior cells to ZPA cells in the chick wing bud. Nature 350:81–83; 1991.

    Article  PubMed  CAS  Google Scholar 

  48. Yokouchi, Y.; Sasaki, H.; Kuroiwa, A. Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature 353:443–445; 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulsen, D.F., Solursh, M., Langille, R.M. et al. Stable, position-related responses to retinoic acid by chick limb-bud mesenchymal cells in serum-free cultures. In Vitro Cell Dev Biol - Animal 30, 181–186 (1994). https://doi.org/10.1007/BF02631441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631441

Key words

Navigation