Skip to main content
Log in

Growth advantage (“clonal dominance”) of metastatically competent tumor cell variants expressed under selective two- or three-dimensional tissue culture conditions

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In previous experiments it was shown that injection into syngeneic CBA/J mice of cell mixtures containing an excess of non-metastatic SP1 mouse mammary carcinoma cells with aras transfected metastatic variant of SP1 called C1, always resulted in the eventual dominance of the C1 subpopulation at the site of inoculation. This occurred despite the growth rates of the two cell populations being identical in vivo when grown separately. The means by which the C1 subpopulation achieved “clonal dominance” is thought to involve its responsiveness to stimulatory paracrine growth factors liberated by the non-metastatic SP1 population. The clonal dominance process, however, could not be recapitulated in conventional monolayer tissue culture conditions in which SP1 and C1 cells were grown together in high concentrations of serum, i.e. under non-limiting culture conditions. We now show that clonal dominance of C1 cells can be observed when the cell mixture is maintained in tissue culture for extended periods, or when the cells are grown under selective, limiting conditions, some of which may mimic growth conditions in vivo more accurately. These conditions were a) growth in low (limiting) serum concentrations; and b) growth as three-dimensional multicellular aggregates, i.e. as “tumor spheroids”. Under all of these conditions dominance of the C1 subpopulation always took place, but with an efficiency 6- to 40-fold less than generally observed in vivo. C1 cells were also able to form more stable (compact) spheroids compared to SP1 cells. Entrapment of the latter in mixed C1/SP1 spheroids increased the recovery of the SP1 cells suggesting some kind of “rescue” mechanism in which cells are protected from physical forces by three-dimensional structure. The relevance of these in vitro interactions for clonal dominance in primary tumors and metastasis in vivo are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, C.; Frost, P.; Kerbel, R. S. Cytogenetic heterogeneity of genetically marked and metastatically competent “dominant” tumor cell clones. Cancer Genet. Cytogenet. 54:153–161; 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Enoki, Y.; Niwa, O.; Yokoro, K., et al. Analysis of clonal evolution in a tumor consisting of pSV2neo-transfected mouse fibrosarcoma cells. Jpn. J. Cancer Res. 81:141–147; 1990.

    PubMed  CAS  Google Scholar 

  3. Gorelik, E.; Beere, W. W.; Herberman, R. B. Role of the NK cells in the anti-metastatic effect of anti-coagulant drug. Int. J. Cancer 33:87; 1984.

    Article  PubMed  CAS  Google Scholar 

  4. Herlyn, M. Human melanoma: development and progression. Cancer Metastasis Rev. 9:101–112; 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Huang, H.-J. S.; Yee, J.-K.; Shew, J.-Y., et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242:1563–1566; 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Johnson, J. P.; Stade, B. G.; Holzmann, B., et al. De novo expression of intercellular adhesion molecule 1 in melanoma correlates with increased risk of metastasis. Proc. Natl. Acad. Sci. USA 86:641–644; 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Kath, R.; Rodeck, U.; Parmiter, A., et al. Growth factor independence in vitro of primary melanoma cells from advanced but not early or intermediate lesions. Cancer Ther. Control 1:179–191; 1991.

    Google Scholar 

  8. Kerbel, R. S. Growth dominance of the metastatic cancer cell: cellular and molecular aspects. Adv. Cancer Res. 55:87–132; 1990.

    PubMed  CAS  Google Scholar 

  9. Kerbel, R. S. Expression of multi-cytokine resistance and multi-growth factor independence in advanced stage metastatic cancer: malignant melanoma as a paradigm. Am. J. Pathol. 141:519–524; 1992.

    PubMed  CAS  Google Scholar 

  10. Kerbel, R. S.; Cornil, I.; Korczak, B. New insights into the evolutionary growth of tumors revealed by Southern gel analysis of tumors genetically tagged with plasmid or proviral DNA insertions. J. Cell Sci. 94:381–387; 1989.

    PubMed  Google Scholar 

  11. Kerbel, R. S.; Waghorne, C.; Korczak, B., et al. Clonal changes in tumors during growth and progression evaluated by Southern gel analysis of random integrations of foreign DNA. CIBA Found. Symp. 141:123–148; 1988.

    PubMed  CAS  Google Scholar 

  12. Kerbel, R. S.; Waghorne, C.; Korczak, B., et al. Clonal dominance of primary tumors by metastatic cells: genetic analysis and biological implications. Cancer Surv. 7:597–629; 1988.

    PubMed  CAS  Google Scholar 

  13. Korczak, B.; Robson, I. B.; Lamarche, C., et al. Genetic tagging of tumor cells with retrovirus vectors: clonal analysis of tumor growth and metastasis in vivo. Mol. Cell. Biol. 8:3143–3149; 1988.

    PubMed  CAS  Google Scholar 

  14. Laderoute, K. R.; Murphy, B. J.; Short, S. M., et al. Enhancement of transforming growth factor-α synthesis in multicellular tumor spheroids of A431 squamous carcinoma cells. Br. J. Cancer 65:157–162; 1992.

    PubMed  CAS  Google Scholar 

  15. Lu, C.; Vickers, M. F.; Kerbel, R. S. Interleukin-6: a fibroblast-derived growth inhibitor of human melanoma cells from early but not advanced stages of tumor progression Proc. Natl. Acad. Sci. USA 89:9215–9219; 1992.

    Article  PubMed  CAS  Google Scholar 

  16. Miller, B. E.; Miller, F. R.; Wilburn, D., et al. Dominance of a mammary tumor subpopulation in mixed heteogenous tumors. Cancer Res. 48:5747–5753; 1988.

    PubMed  CAS  Google Scholar 

  17. Miller, F. R.; Heppner, G. H. Cellular interactions in metastasis. Cancer Metastasis Rev. 9:21–34; 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Moffett, B. F.; Babau, D.; Bao, L., et al. Fate of clonal lineages during neoplasia and metastasis studied with an incorporated genetic marker. Cancer Res. 52:1737–1743; 1992.

    PubMed  CAS  Google Scholar 

  19. Offner, F. A.; Wirtz, H. C.; Schiefer, J., et al. Interaction of human malignant melanoma (ST-ML-12) tumor spheroids with endothelial cell monolayers. Am. J. Pathol. 141:601–610; 1992.

    PubMed  CAS  Google Scholar 

  20. Price, J. E.; Bell, C.; Frost, P. The use of a genotypic marker to demonstrate clonal dominance during the growth and metastasis of a human breast carcinoma in nude mice. Int. J. Cancer 45:968–971; 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Radinsky, R.; Kraemer, P. M.; Proffitt, M. R., et al. Clonal diversity of the Kirsten-ras oncogene during tumor progression in athymic nude mice: mechanisms of amplification and rearrangement. Cancer Res. 48:4941–4953; 1988.

    PubMed  CAS  Google Scholar 

  22. Rak, J. W.; Hegmann, E. J.; Kerbel, R. S. The role of angiogenesis in tumor progression and metastasis. In: Heppner, G. H., ed. Molecular biology of a cancer cell. Greenwich, CT: JAI Press, Inc; 1992:in press.

    Google Scholar 

  23. Rodeck, U.; Herlyn, M.; Menssen, D., et al. Metastatic but not primary melanoma cell lines grow in vitro independently of exogenous growth factors. Int. J. Cancer 40:687–690; 1987.

    Article  PubMed  CAS  Google Scholar 

  24. Rofstad, E. K.; Wahl, A.; Davies, C., et al. Growth characteristics of human melanoma multicellular spheroids in liquid-overlay culture: comparisons with the parent tumour xenografts. Cell Tissue Kinet. 19:205–216; 1986.

    PubMed  CAS  Google Scholar 

  25. Samiei, M.; Waghorne, C. G. Clonal selection within metastatic SP1 mouse mammary tumors is independent of metastatic potential. Int. J. Cancer 47:771–775; 1991.

    Article  PubMed  CAS  Google Scholar 

  26. Sasaki, T.; Yamamoto, M.; Yamaguchi, T., et al. Development of multicellular spheroids of HeLa cells cocultured with fibroblasts and their response to X-irradiation. Cancer Res. 44:345–351; 1984.

    PubMed  CAS  Google Scholar 

  27. Schipper, J. H.; Frixen, U. H.; Behrens, J., et al. E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumor differentiation and lymph node metastasis. Cancer Res. 51:6328–6337; 1991.

    PubMed  CAS  Google Scholar 

  28. Sidransky, D.; Mikkelsen, T.; Schwechheimer, K., et al. Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355:846; 1992.

    Article  PubMed  CAS  Google Scholar 

  29. Staroselsky, A. N.; Radinsky, R.; Fidler, I. J., et al. The use of molecular genetic markers to demonstrate the effect of organ environment on clonal dominance in a human renal-cell carcinoma grown in nude mice. Int. J. Cancer 51:130–138; 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Sutherland, R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240:177–184; 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Sutherland, R. M.; Durand, R. E. Growth and characteristics of multicell spheroids. In: Ackner, H.; Carlsson, J.; Durand, R., et al., eds. Spheroids in cancer research. New York: Springer Verlag; 1984:24–50.

    Google Scholar 

  32. Takahashi, R.; Hashimoto, T.; Xu, H.-J., et al. The retinoblastoma gene functions as a growth and tumor suppressor in human bladder carcinoma cells. Proc. Natl. Acad. Sci. USA 88:5257–5261; 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Takezawa, T.; Yamazaki, K.; Mori, Y., et al. Morphological and immuno-cytodiencial characterization of a hetero-spheroid composed of fibroblasts and hepatocytes. J. Cell Sci. 101:495–501; 1992.

    PubMed  CAS  Google Scholar 

  34. Theodorescu, D.; Caltabiano, M.; Greig, R., et al. Reduction of TGF-beta activity abrogates growth promoting tumor cell-cell interactions in vivo. J. Cell Physiol. 148:380–390; 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Theodorescu, D.; Cornil, I.; Sheehan, C., et al. Dominance of metastatically competent cells in primary murine breast neoplasms is necessary for distant metastatic spread. Int. J. Cancer 47:118–123; 1991.

    Article  PubMed  CAS  Google Scholar 

  36. Theodorescu, D.; Sheehan, C.; Kerbel, R. S. Tumor cells grown as monolayers or multicellular spheroids indicate autoregulation of TGF-β gene expression is dependent on tissue architecture. In Vitro Cell. Dev. Biol. In press; 1992.

  37. Tofilon, P. J.; Buckley, N.; Deen, D. F. Effect of cell-cell interactions on drug sensitivity and growth of drug-sensitive and -resistant tumor cells in spheroids. Science 226:862–864; 1984.

    Article  PubMed  CAS  Google Scholar 

  38. Waghorne, C.; Kerbel, R. S.; Breitman, M. L. Metastatic potential of SP1 mouse mammary adenocarcinoma cells is differentially induced by activated and normal forms of h-H-ras. Oncogene 1:149–155; 1987.

    PubMed  CAS  Google Scholar 

  39. Waghorne, C.; Thomas, M.; Lagarde, A. E., et al. Genetic evidence for progressive selection and overgrowth of primary tumors by metastatic cell subpopulations. Cancer Res. 48:6109–6114; 1988.

    PubMed  CAS  Google Scholar 

  40. Weiss, L. Metastatic inefficiency. Adv. Cancer Res. 54:159–211; 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rak, J.W., Kerbel, R.S. Growth advantage (“clonal dominance”) of metastatically competent tumor cell variants expressed under selective two- or three-dimensional tissue culture conditions. In Vitro Cell Dev Biol - Animal 29, 742–748 (1993). https://doi.org/10.1007/BF02631431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631431

Key words

Navigation