Skip to main content
Log in

Growth factors in invertebrate in vitro culture

  • TCA Session-In-Depth Invertebrate Cell Culture
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

An increasing number of polypeptide growth factors have been identified that have proven essential in the development of defined cell culture media for mammalian cell culture. The development of defined mammalian cell culture media, in turn, has provided an environment for studying cell lines in an experimentally manageable unit for studying the action of cellular regulators and genes that determine the properties of cells. Evidence that vertebrate growth factors may be present in insects is based on DNA sequences that encode epidermal growth factor and transforming growth factor-β. However, research on the influence of commercially available vertebrate growth factors is very limited. Although the majority of insect growth-promoting substances studied were isolated directly from insect hemolymph, few of these have been purified to the extent that they could be tested in insect cell, tissue, and endoparasite cultures. Research is needed in both of these areas to aid in developing defined insect culture systems, and to understand better the regulation of postembryonic growth and development in insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aizawa, K.; Sato, F. Culture de tissus de ver a soie,Bombyx mori, dans un milieu sans hemolymphe. Ann. Epiphyt. 14:125; 1963.

    Google Scholar 

  2. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  3. Barnes, D.; Sirbasku, editors. Peptide growth factors, Methods in Enzymology, vols. 146, 147. New York: Acedemic Press; 1987.

    Google Scholar 

  4. Baxter, R. C.; Martin, J. L. Binding proteins for the insulin-like growth factors: structure, regulation and function. Prog. Growth Factor Res. 1:49–68; 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Bryant, P. J. Localized cell death caused by mutations in aDrosophila gene coding for a transforming growth factor-β homolog. Dev. Biol. 128:386–395; 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Chiu, R.-J.; Black, L. M. Monolayer cultures of insect cell lines and their inoculation with a plant virus. Nature 215:1076–1078; 1967.

    Article  PubMed  CAS  Google Scholar 

  7. Davis, K. T.; Shearn, A. In vitro growth of imaginal disks fromDrosophila melanogaster. Science 196:438–440; 1977.

    Article  PubMed  CAS  Google Scholar 

  8. Deul, T. F. Polypeptide growth factors: roles in normal and abnormal cell growth. Ann. Rev. Cell Biol. 3:443–492; 1987.

    Google Scholar 

  9. Ebberink, R. H. M.; Smit, A. B.; Van Minnen, J. The insulin family: evolution of structure and function in vertebrates and invertebrates. Biol. Bull. 177:176–182; 1989.

    Article  CAS  Google Scholar 

  10. Ferkovich, S. M.; Oberlander, H.; Dillard, C., et al. Purification and properties of a factor from insect hemolymph that promotes multicellular vesicle formation in vitro. Arch. Insect Biochem. Physiol. 6:73–83; 1987.

    Article  CAS  Google Scholar 

  11. Ferkovich, S. M.; Oberlander, H.; Dillard, C., et al. Identification of a cell line vesicle promoting factor in larval tissues ofTrichoplusia ni. In: Hagedorn, H. H.; Hildebrand, J. G.; Kidwell, M. G., et al., eds. Molecular insect science. New York and London: Plenum Press; 1990:301.

    Google Scholar 

  12. Garcia, J. V.; Gehm, B. D.; Rosner, M. R. An evolutionarily conserved enzyme degrades transforming growth factor-alpha as well as insulin. J. Cell Biol. 109:1301–1307; 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Goodwin, R. H.; Adams, J. R. Nutrient factors influencing viral replication in serum-free insect cell line culture. In: Kurstack, E.; Maramorosh, K.; Dubendorfer, A., eds. Invertebr. systems in vitro. 16:493-509; 1980.

  14. Gospodarowicz, D.; Moran, J. S. Growth factors in mammalian cell culture. Ann. Rev. Biochem. 45:531–558; 1976.

    Article  PubMed  CAS  Google Scholar 

  15. Grace, T. D. C. Establishment of four strains of cells from insect tissue grownin vitro. Nature 195:788–789; 1962.

    Article  PubMed  CAS  Google Scholar 

  16. Greany, P.; Clark, W.; Ferkovich, S. M., et al. Isolation and characterization of a host hemolymph protein required for development of the eggs of the endoparasiteMicroplitis croceipes. In: Hagedorn, H. H.; Hildebrand, J. G.; Kidwell, M. G., et al., eds. Molecular insect science. New York and London; Plenum Press; 1990:306.

    Google Scholar 

  17. Greany, P. D.; Ferkovich, S. M.; Hanrahan, A. M. Use of dialyzed, concentrated fetal bovine serum as a medium supplement for the endoparasitoidApanteles marginiventris (Cresson). VI International Conference on Invertebrate Tissue Culture. Abstracts, E. Kurstak, University of Montreal, Canada. 1983:78.

    Google Scholar 

  18. Heath, J. K. Progress in growth factor research editorial. Prog. Growth Factor Res. 1:i-ii; 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Hsu, S. H.; Liu, H. H.; Suitor, E. C., Jr. Further description of a subline of Grace’s mosquito (Aedes aegypti L.) cells adapted to hemolymph-free medium. Mosq. News 29:439–446; 1969.

    Google Scholar 

  20. Hubners, H. A.; Hubners, E.; Webb, B. A., et al. Iron binding proteins and their roles in the tobacco hornworm,Manduca sexta (L.). J. Comp. Physiol. B158:291–300; 1988.

    Google Scholar 

  21. Irie, K.; Xie, Z.; Nettles, W. C., Jr., et al. The partial purification of a Trichogramma pretiosum pupation factor from hemolymph ofManduca sexta. Insect Biochem. 17:269–275; 1987.

    Article  CAS  Google Scholar 

  22. Kanost, M. R.; Kawooya, J. K.; Law, J. H., et al. Insect haemolymph proteins. Adv. Insect Physiol. 22:299–396; 1990.

    Article  Google Scholar 

  23. Kaufmann, U.; Zapf, J.; Torretti, B., et al. Demonstration of a specific carrier protein of nonsuppressible insulin-like activityin vivo. J. Clin. Endocrinol. Metab. 44:160–166; 1977.

    Article  PubMed  CAS  Google Scholar 

  24. Kelley, M. R.; Kidd, S.; Deutsch, W. A., et al. Mutations altering the structure of epidermal growth factor-like coding sequences at theDrosophila notch locus. Cell 51:539–548; 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Kopczynski, C. C.; Alton, A. K.; Fechtel, K., et al. Delta,Drosophila neurogenic gene, is transcriptionally complex and encodes a protein related to blood coagulation factors and epidermal growth factor of vertebrates. Genes Dev. 2:1723–1735; 1988.

    PubMed  CAS  Google Scholar 

  26. Kuno, G.; Hink, W. F.; Briggs, J. D.; Growth-promoting serum proteins forAedes aegypti cells cultured in vitro. J. Insect Physiol. 17:1865–1879; 1971.

    Article  PubMed  CAS  Google Scholar 

  27. Lynn, D. E.; Oberlander, H. Obtainment of hormonally sensitive cell lines from imaginal discs of Lepidoptera species. In: Techniques in in vitro invertebrate hormones and genes. Techniques in the life sciences; cell biology, vol. C2. Ireland: Elsevier Scientific Publishers; 1986:1–12.

    Google Scholar 

  28. Lynn, D. E.; Hung, A. C. F. Development of a continuous cell line from the insect egg parasitoid,Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). In Vitro Cell. Dev. Biol. 22:440–442. 1986.

    Google Scholar 

  29. McKeehan, W. L.; Barnes, D.; Reid, L., et al. Frontiers in mammalian cell culture. In Vitro Cell. Dev. Biol. 26:9–23; 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Mitsuhashi, J. Nutritional requirements of insect cellin vitro. In: Mitsuhashi, J., ed. Invertebrate cell system applications. Boca Raton, FL: CRC Press; 1989:3–20.

    Google Scholar 

  31. Mitsuhashi, J.; Goodwin, R. H. The serum-free culture of insect cellsin vitro. In: Mitsuhashi, J., ed. Invertebrate cell system applications. Boca Raton, FL:CRC Press; 1989:31–43.

    Google Scholar 

  32. Oberlander, H. Growth and partial metamorphosis of imaginal disks of the greater wax moth,Galleria mellonella, In vitro. Nature 216:1140–1141; 1967.

    Article  Google Scholar 

  33. Padgett, R. W.; St. Johnson, R. D.; Gelbart, W. M. A transcript from aDrosophila pattern gene predicts a protein homologous to the transforming growth factor-B family. Nature 325:81–84; 1987.

    Article  PubMed  CAS  Google Scholar 

  34. Seecof, R. L.; Dewhurst, S. Insulin is aDrosophila hormone and acts to enhance the differentiation of embryonicDrosophila cells. Cell Differ. 3:63–70; 1974.

    Article  PubMed  CAS  Google Scholar 

  35. Vaughn, J. L.; Louloudes, S. J. Isolation of two growth promoting fractions from insect hemolymph. In Vitro 14:351; 1978.

    Google Scholar 

  36. Wharton, K. A.; Johansen, K. M.; Xu, T., et al. Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581; 1985.

    Article  PubMed  CAS  Google Scholar 

  37. Wielgus, J. J.; Caldwell, G. A.; Nichols, R. L., et al. Purification, properties, and titer of a hemolymph trophic factor in larvae and pupae ofManduca sexta. Insect Biochem. 20:65–72; 1990.

    Article  CAS  Google Scholar 

  38. Williams, C. M.; Kambysellis, M. P. In vitro action of ecdysone. Proc. Natl. Acad. Sci. USA 63:231; 1969.

    Google Scholar 

  39. Wyss, C. CalGF, a cationic low molecular weight growth factor fromDrosophila melanogaster and the nutritional requirements of kchp cells. Insect Biochem. 12:515–522; 1982.

    Article  CAS  Google Scholar 

  40. Yunker, C. E.; Vaughn, J. L.; Cory, J. Adaptation of an insect cell line (Grace’s Antheria cells) to medium free of insect hemolymph. Science 155:1565–1566; 1967.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferkovich, S.M., Oberlander, H. Growth factors in invertebrate in vitro culture. In Vitro Cell Dev Biol - Animal 27, 483–486 (1991). https://doi.org/10.1007/BF02631149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631149

Key words

Navigation