Skip to main content
Log in

Isolation and immortalization of rat pre-type II cell lines

  • Regular Paper
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The fetal respiratory distress syndrome is due, in part, to the presence of abundant pre-type II alveolar epithelial cells that have not yet differentiated into mature type II cells. Studies of this syndrome have been limited somewhat by the lack of an adequate in vitro model. In the present study we immortalized pre-type II cells by infecting primary isolates obtained from fetal rat lung with a retroviral construct expressing the adenoviral 12S E1A gene product. The immortalized pre-type II cells retained many of the ultrastructural features typical of pre-type II cells in primary culture, most notably lamellar bodies were not detected and the cells contained abundant stores of glycogen, expressed cytokeratin filaments, and bound the lectinMaclura pomifera. Karyotyping revealed that the cells are diploid. Growth studies demonstrate log phase growth in the presence of serum with a markedly decreased growth rate shortly after the cells reach confluence. Exposure of the immortalized pre-type II cells to hydrocortisone and dibutryl cAMP resulted in the induction of lamellar bodylike organelles; however, these cells did not secrete surfactant or express surfactant protein A. These cells may serve as useful models for some in vitro studies of fetal type II cell maturation or the fetal respiratory distress syndrome, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Askin, F.; Kuhn, C. The cellular origin of pulmonary surfactant. Lab. Invest. 25:260; 1971.

    PubMed  CAS  Google Scholar 

  2. Avery, M. E. The Lung and its disorders in the newborn infant, 2nd ed. Philadelphia, PA: W. B. Saunders Company; 1968.

    Google Scholar 

  3. Barrett, C. T.; Sevanian, A.; Lavin, M., et al. Role of adenosine 3′,5′,monophosphate in maturation of fetal lungs. Pediatr. Res. 10:621–625; 1976.

    PubMed  CAS  Google Scholar 

  4. Brandstrup, N.; Kretchmer, N. The metabolism of glycogen in the lungs of the fetal rabbit. Dev. Biol. 11:202–216; 1965.

    Article  PubMed  CAS  Google Scholar 

  5. Branton, P. E.; Bayley, S. T.; Graham, F. L. Transformation by human adenoviruses. Biochem. Biophys. Acta 780:67–94; 1985.

    PubMed  CAS  Google Scholar 

  6. Bunton, T. E.; Plopper, C. G. Triamcinolone induced structural alterations in the development of the lung of the fetal rhesus macaque. Am. J. Obstet. Gynecol. 148:203–215; 1984.

    PubMed  CAS  Google Scholar 

  7. Cheek, J. M.; Kim, K.; Crandall, E. D. Tight monolayers of rat alveolar epithelial cells: bioelectric properties and active sodium transport. Am. J. Physiol. 256:C688-C693; 1989.

    PubMed  CAS  Google Scholar 

  8. Collaborative Group on Antenatal Steroid Therapy. Effect of antenatal dexamethasone administration. In: Prevention or respiratory distress syndrome. Bethesda: National Institutes of Health. (NIH publication no. 85:2695); 1985.

    Google Scholar 

  9. Cone, R. D.; Grodzicker, T.; Jaramillo, M. A retrovirus expressing the 12 S adenoviral E1A gene product can immortalize epithelial cells from a broad range of rat tissues. Mol. Cell. Biol. 8:1036–1044; 1988.

    PubMed  CAS  Google Scholar 

  10. Conn, H. J.; Darrow, M. A.; Emmel, V. M. Staining procedures. Baltimore, MD: Williams & Wilkins; 1962.

    Google Scholar 

  11. Engle, M. J.; Sanders, R. L.; Douglas, W. H. J. Type II alveolar cells in organotypic culture. A model system for the study of surfactant synthesis. Biochem. Biophys. Acta 617:225–236; 1980.

    PubMed  CAS  Google Scholar 

  12. Funkhouser, J. D.; Hughes, E. R.; Peterson, R. D. A. An organ culture system for the study of fetal lung development. Biochem. Biophys. Res. Commun. 70:630–637; 1976.

    Article  PubMed  CAS  Google Scholar 

  13. Gandy, G.; Jacobson, W.; Gairdner, D. Hyaline membrane disease. I: Cellular changes. Arch. Dis. Child. 45:289–310; 1970.

    PubMed  CAS  Google Scholar 

  14. Gautier, A.; Campiche, M.; Bozic, C., et al. Pulmonary epithelium in the human fetus and newborn. Proceedings of the fifth international congress for electron microscopy. Philadelphia, PA: Academic Press; 1962:WW-6.

    Google Scholar 

  15. Gil, J.; Reiss, O. K. Isolation and characterization of lamellar bodies and tubular myelin from rat lung homogenates. J. Cell Biol. 58:152; 1978.

    Article  Google Scholar 

  16. Gross, I.; Freedman, R. M.; Wilson, C. M., et al. Organotypic culture of fetal rat lung: evaluation and comparison with organ culture. Am. Rev. Respir. Dis. 123:313–319; 1981.

    PubMed  CAS  Google Scholar 

  17. Gross, I.; Freedman, R. M.; Wilson, C. M., et al. Cortisol induced accumulation of phospholipids in organ culture of human fetal lung. Scand. J. Clin. Lab. Invest. 35:419–423; 1975.

    Google Scholar 

  18. Gross, I.; Wilson, C. M. Fetal lung in organ culture. IV. Supradditive hormone interaction. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 52:1420–1425; 1982.

    CAS  Google Scholar 

  19. Kauffman, S. L. Proliferation, growth, and differentiation of pulmonary epithelium in fetal mouse lung exposed transplacentally to dexamethasone. Lab. Invest. 37:497–501; 1977.

    PubMed  CAS  Google Scholar 

  20. Kawada, H.; Shannon, J. M.; Mason, R. J. Improved maintenance of adult rat alveolar type II cell differentiation in vitro: effect of hydrocortisone and cyclic AMP. Biochem. Biophys. Acta 972:152–166; 1988.

    PubMed  CAS  Google Scholar 

  21. Kikkawa, Y.; Kaibara, M.; Motoyama, E. K., et al. Morphological development of fetal rabbit lung and its acceleration with cortisol. Am. J. Pathol. 64:423–442; 1971.

    PubMed  CAS  Google Scholar 

  22. Kniazeff, A. J.; Stoner, G. D.; Terry, L., et al. Characteristics of epithelial cells cultured from feline lung. Lab Invest. 34:495–550; 1976.

    PubMed  CAS  Google Scholar 

  23. Liggins, G. C.; Howie, R. N. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50:515–525; 1972.

    PubMed  CAS  Google Scholar 

  24. Malloy, M. H.; Hartford, R. B.; Kleinman, J. C. Trends in mortality caused by respiratory distress syndrome in the United States, 1969–83. Am. J. Public Health. 77:1511–1514; 1987.

    PubMed  CAS  Google Scholar 

  25. Martensson, J.; Jain, A.; Frayer, W., et al. Glutathione metabolism in the lung: inhibition of its synthesis leads to lamellar body and mitochondrial defects. Proc. Natl. Acad. Sci. USA 86:5296–5300; 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Mason, R. J.; Williams, M. C. Phospholipid composition and ultrastructure of A549 cells and other cultured pulmonary epithelial cells of presumed type II cell origin. Biochem. Biophys. Acta 671:36–50; 1980.

    Google Scholar 

  27. Mason, R. J.; Williams, M. C.; Widdicombe, J. H. Cell culture systems for studying RDS. In: Raivio, K. O., ed. Respiratory distress syndrome. London: Academic Press; 1984:87–96.

    Google Scholar 

  28. Mason, R. J.; Wiliams, M. C.; Widdicombe, J. H., et al. Transepithelial transport by pulmonary alveolar type II cells in primary culture. Proc. Natl. Acad. Sci. USA 79:6033–6037; 1982.

    Article  PubMed  CAS  Google Scholar 

  29. Mason, R. J.; Walker, S. R.; Shields, B. A., et al. Identification of rat alveolar type II epithelial cells with a tannic acid and polychrome stain. Am. Rev. Respir. Dis. 131:786–792; 1985.

    PubMed  CAS  Google Scholar 

  30. Montell, C.; Courtois, G.; Eng, C., et al. Complete transformation by adenovirus 2 requires both E1A proteins. Cell 36:951–961; 1984.

    Article  PubMed  CAS  Google Scholar 

  31. Paraskeva, C.; Gallimore, P. H. Tumorogenicity and in vitro characteristics of rat liver epithelial cells and their adenovirus-transformed derivatives. Int. J. Cancer 25:631–639; 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Paul, G. W.; Hassettand, R. J.; Reiss, O. K. Formation of lung surfactant films from intact lamellar bodies. Proc. Natl. Acad. Sci. USA 74:3617–3620; 1977.

    Article  PubMed  CAS  Google Scholar 

  33. Possmayer, F.; Yu, S. H.; Weber, J. M., et al. Pulmonary surfactant. Can. J. Biochem. Cell Biol. 62:1121–1133; 1984.

    Article  PubMed  CAS  Google Scholar 

  34. Post, M.; Smith, B. T. Histochemical and immunocytochemical identification of alveolar type II epithelial cells isolated from fetal rat lung. Am. Rev. Respir. Dis. 137:525–530; 1988.

    PubMed  CAS  Google Scholar 

  35. Post, M.; Torday, J. S.; Smith, B. T. Alveolar type II cells isolated from fetal rat lung organotypic cultures synthesize and secrete surfactant-associated phospholipids and respond to fibroblast pneumocyte factor. Exp. Lung Res. 7:53–65; 1984.

    PubMed  CAS  Google Scholar 

  36. Rannels, D. E.; Rannels, S. R. Influence of the extracellular matrix on type II cell differentiation. Chest 96:165–173; 1989.

    PubMed  CAS  Google Scholar 

  37. Rochat, T.; Casale, J.; Hunninghake, G. W., et al. Neutrophil cathespin G increases permeability of cultured type II pneumocytes. Am. J. Physiol. 155:C603-C611; 1988.

    Google Scholar 

  38. Ruley, H. E. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304:602–606; 1983.

    Article  PubMed  CAS  Google Scholar 

  39. Schlame, M.; Casals, C.; Rostow, B., et al. Molecular species of phosphatidylcholine and phosphatidylglycerol in rat lung surfactant and different pools of pneumocytes type II. Biochem. J. 253:209–215; 1988.

    PubMed  CAS  Google Scholar 

  40. Scott, J. E.; Possmayer, F.; Harding, G. R. Alveolar pre-type II cells from the fetal rabbit lung: isolation and characterization. Biochem. Biophys. Acta 753:195–204; 1983.

    PubMed  CAS  Google Scholar 

  41. Sevanian, A.; Kaplan, S. A.; Barrett, C. T. Phospholipid synthesis in fetal lung organotypic cultures and isolated type II pneumocytes. Biochem. Biophys. Acta 664:498–512; 1981.

    PubMed  CAS  Google Scholar 

  42. Shannon, J. M.; Mason, R. J.; Jennings, S. D. Functional differentiation of alveolar type II epithelial cells in vitro: effects of cell shape, cell-matrix interactions and cell-cell interactions. Biochem. Biophys. Acta 931:143–156; 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Sharp, M. J.; Borer, R. C., Jr.; Vadney, L., et al. Choline incorporation into lecithin in response to insulin or dexamethasone in homogenous cell cultures of rat lung epithelial cells and fibroblasts. Pediatr. Res. 14:899–900; 1980.

    Article  PubMed  CAS  Google Scholar 

  44. Smith, B. T.; Torday, J. S.; Giround, C. J. P. Evidence for different gestation-dependent effects of cortisol on cultured fetal lung cells. J. Clin. Invest. 53:1518–1526; 1974.

    Article  PubMed  CAS  Google Scholar 

  45. Wegman, M. E. Annual summary of vital statistics — 1983. Pediatrics 74:981–990; 1984.

    PubMed  CAS  Google Scholar 

  46. Williams, M. Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs. J. Cell Biol. 72:260–277; 1977.

    Article  PubMed  CAS  Google Scholar 

  47. Yoo, T. J.; Kuo, C. Y.; Patiz, S. R., et al. Loss of alpha-fetoprotein in rat hepatoma culture cells. Int. J. Cancer 24:184–192; 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallampalli, R.K., Floerchinger, C.S. & Hunninghake, G.W. Isolation and immortalization of rat pre-type II cell lines. In Vitro Cell Dev Biol - Animal 28, 181–187 (1992). https://doi.org/10.1007/BF02631089

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631089

Key words

Navigation