Skip to main content
Log in

Heparin-like glycosaminoglycans influence growth and phenotype of human arterial smooth muscle cells in vitro. II. The platelet-derived growth factor A-chain contains a sequence that specifically binds heparin

  • Regular Paper
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Synthetic oligopeptides were used to study the specificity of the interaction between heparin and platelet-derived growth factor (PDGF) in competition experiments. DNA synthesis in PDGF-dependent human arterial smooth muscle cell (hASMC) cultures was used as a biological tracer of PDGF activity. Oligo-108-124 (corresponding to amino acid residues 108-124 of the long PDGF A-chain isoform) had no effect on DNA synthesis in itself but competed at 10−10 M concentration effectively with PDGF for binding to heparin and released the block on thymidine incorporation induced by heparin. Poly-lysine-serine (lysine:serine ratio 3:1) was also effective but at a considerably higher concentration (10−6 M). Poly-arginine-serine did not compete with PDGF for heparin as deduced from the cell assay. This suggested that among basic amino acids, lysine was more important than arginine for heparin binding. Deletion of lysine residues 115 and 116 in Oligo-108-124 abolished its effect on the interaction between PDGF and heparin in the cell assay. Likewise, Oligo-69-84 (corresponding to the PDGF A-chain residues 69–84), with three lysine residues interrupted by a proline, was ineffective. In Oligo-108-124, the lysine residues are interrupted by an arginine. Our results suggested that the binding between PDGF and heparin is specific and that the amino acid sequence [-Lys115-Lys116-Arg117-Lys118-Arg119-] is of major importance. They do not however, exclude other domains of the PDGF A or B chains as additional binding sites for heparin nor do they exclude the possibility that heparin and the PDGF receptor share a common binding site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betsholtz, C.; Johnsson, A.; Heldin, C-H., et al. cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature 320:695–699; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Bonthron, D. T.; Morton, C. C.; Orkin, S. H., et al. Platelet-derived growth factor A chain: gene structure, chromosomal location, and basis for alternative mRNA splicing. Proc. Natl. Acad. Sci. USA 85:1492–1496; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Cardin, A. D; Weintraub, H. J. R. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9:21–32; 1989.

    PubMed  CAS  Google Scholar 

  • Castellot, J. J.; Addonizio, M. L.; Rosenberg, R., et al. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle growth. J. Cell. Biol. 90:372–379; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Castellot, J. J.; Favreau, L. V.; Karnovsky, M. J., et al. Inhibition of vascular smooth muscle cell growth by endothelial cell-derived heparin. Possible role of a platelet endoglycosidase. J. Biol. Chem. 257:11256–11260; 1982.

    PubMed  CAS  Google Scholar 

  • Clemmons, D. R. Interactions of circulating cell derived and plasma growth factors in stimulating cultured smooth muscle cell proliferation. J. Cell. Physiol. 121:425–430; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Clowes, A. W.; Karnovsky, M. J. Suppression by heparin of smooth muscle cell proliferation in injured arteries. Nature 265:625–626; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Dalferes, E. R.; Radhakrishnamurthy, B.; Ruiz, H. A., et al. Composition of proteoglycans from human atherosclerotic lesions. Exp. Mol. Pathol. 47:363–376; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Esch, F.; Baird, A.; Ling, N., et al. Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino terminal sequence of bovine brain acidic FGF. Proc. Natl. Acad. Sci. USA 85:6507–6511; 1985a.

    Article  Google Scholar 

  • Esch, F.; Ueno, N.; Baird, A., et al. Primary structure of bovine brain acidic fibroblast growth factor (FGF). Biochem. Biophys. Res. Commun. 133:554–562; 1985b.

    Article  PubMed  CAS  Google Scholar 

  • Fager, G.; Hansson, G. K.; Ottosson, P., et al. Human arterial smooth muscle cells in culture. Effects of platelet-derived growth factor and heparin on growth in vitro. Exp. Cell Res. 176:319–335; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Fager, G.; Hansson, G. K.; Gown, A. M., et al. Human arterial smooth muscle cells in culture; inverse relationships between proliferation and expression of contractile proteins. In Vitro Cell. Dev. Biol. 25:511–519; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Fager, G.; Camejo, G.; Bonjers, G. Heparin-like glycosaminoglycans influence growth and phenotype of human arterial smooth muscle cells in vitro. I. Evidence for reversible binding and inactivating of the platelet-derived growth factor by heparin. In Vitro Cell. Dev. Biol. 28A:168–175; 1992.

    PubMed  CAS  Google Scholar 

  • Fritze, L. M.; Reilly, C. F.; Rosenberg, R. D. An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J. Cell. Biol. 100:1041–1049; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, N.; Fasman, G. D. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116; 1969.

    Article  PubMed  CAS  Google Scholar 

  • Grotendorst, G. R.; Seppä, H. E. J.; Kleinman, H. K., et al. Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 78:3669–3672; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Grotendorst, G. R.; Chang, T.; Seppä, H. E. J., et al. Platelet-derived growth factor is a chemoattractant for vascular smooth muscle cells. J. Cell. Physiol. 113:261–266; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Hoover, R. L.; Rosenberg, R.; Haering, W., et al. Inhibition of rat arterial smooth muscle cell proliferation by heparin. Circ. Res. 47:578–583; 1980.

    PubMed  CAS  Google Scholar 

  • Johnson-Wint, B.; Hollis, S. A rapid in situ deoxyribonucleic acid assay for determining cell number in culture and tissue. Anal. Biochem. 122:338–344; 1982.

    Article  PubMed  CAS  Google Scholar 

  • LaRochelle, W. J.; Giese, N.; May-Siroff, M., et al. Molecular localization of the transforming and secretory properties of PDGF A and PDGF B. Science 248:1541–1544; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Maher, D. W.; Lee, B. A.; Donoghue, D. J. The alternatively spliced exon of the platelet-derived growth factor A chain encodes a nuclear targeting signal. Mol. Cell. Biol. 9:2251–2253; 1989.

    PubMed  CAS  Google Scholar 

  • Majack, R. A.; Bornstein, P. Heparin and related glycosaminoglycans modulate the secretory phenotype of vascular smooth muscle cells. J. Cell. Biol. 99:1688–1695; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Majack, R. A.; Clowes, A. W. Inhibition of vascular smooth muscle cell migration by heparin-like glycosaminoglycans. J. Cell. Physiol. 118:253–256; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Majack, R. A.; Coates Cook, S.; Bornstein, P. Platelet-derived growth factor and heparin-like glycosaminoglycans regulate thrombospondin synthesis and deposition in the matrix by smooth muscle cells. J. Cell. Biol. 101:1059–1070; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Matoskova, B.; Rorsman, F.; Svensson, V., et al. Alternative splicing of the platelet-derived growth factor A-chain transcript occurs in normal as well as tumor cells and is conserved among mammalian species. Mol. Cell. Biol. 9:3148–3150; 1989.

    PubMed  CAS  Google Scholar 

  • Nilsson, J.; Ksiazek, T.; Thyberg, J., et al. Cell surface components and growth regulation in cultivated arterial smooth muscle cells. J. Cell. Sci. 64:107–121; 1983.

    PubMed  CAS  Google Scholar 

  • Östman, A.; Bäckström, G.; Fong, N., et al. Expression of three recombinant homodimeric isoforms of PDGF inSaccharomyces cerevisiae: evidence for difference in receptor binding and functional activities. Growth Factors 1:271–281; 1989.

    PubMed  Google Scholar 

  • Owens, G. K.; Loeb, A.; Gordon, D., et al. Expression of smooth muscle-specific isoactin in cultured vascular smooth muscle cells: relationship between growth and cytodifferentiation. J. Cell. Biol. 102:343–352; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Rorsman, F.; Bywater, M.; Knott, T. J., et al. Structural characterization of the human platelet-derived growth factor A-chain cDNA and gene: alternative exon usage predicts two different precursor proteins. Mol. Cell. Biol. 8:571–577; 1988.

    PubMed  CAS  Google Scholar 

  • Ross, R. Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis 1:293–311; 1981.

    PubMed  CAS  Google Scholar 

  • Seifert, R. A.; Schwartz, S. M.; Bowen-Pope, D. F. Developmentally regulated production of platelet-derived growth factor-like molecules. Nature 311:669–671; 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fager, G., Camejo, G., Olsson, U. et al. Heparin-like glycosaminoglycans influence growth and phenotype of human arterial smooth muscle cells in vitro. II. The platelet-derived growth factor A-chain contains a sequence that specifically binds heparin. In Vitro Cell Dev Biol - Animal 28, 176–180 (1992). https://doi.org/10.1007/BF02631088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631088

Key words

Navigation