Skip to main content
Log in

Inducible expression of granulocyte-macrophage colony-stimulating factor, tumor necrosis FACTOR-α, and INTERFERON-γ in two human cytotoxic leukemic T-cell lines

  • Regual Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We investigated the ability of the TALL-103/2 and TALL-104 leukemic cell lines to produce lymphokines in response to activation signals, such as tumor cells and anti-CD3 (OKT3) or -CD2 (B67.1) monoclonal antibodies (mAb) or both. Both cell lines were found to produce high levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF). The latter lymphokine is induced by lysable tumor cells and by immobilized OKT3 and B67.1 mAb only in the presence of interleukin (IL-2). IFN-γ and TNF-α are induced upon CD3 but not CD2 stimulation, both in the presence and absence of IL-2. Interestingly, the B67.1 mAb amplifies the OKT3-induced responses by 2- to 10-fold, bringing the IFN-γ and TNF-α levels of production up to 200 U/ml. Thus, simultaneous triggering of the CD2 and CD3 signaling pathways results in a very efficient lymphokine release. Of all the tumor cell lines tested as inducers, only K562 cells are able to stimulate the production of IFN-γ and TNF-α in TALL-103/2 and TALL-104 cells, especially upon culture in IL-2. Lymphokine mRNA expression after stimulation with mAb or K562 cells peaks at 2 h in both cell lines. No messages are detectable in TALL-103/2 cells at 8 h, whereas in TALL-104 cells, IFN-γ and GM-CSF transcripts are still present at 8 and 20 h, respectively. The inducible and highly regulatable expression of lymphokine release by these cell lines provides a unique model for studying mechanisms of lymphokine induction by different biological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anegón, I.; Cuturi, M. C.; Trinchieri, G., et al. Interaction of Fcγ receptor (CD16) with ligands induces transcription of IL-2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J. Exp. Med. 167:452–472; 1988.

    Article  PubMed  Google Scholar 

  2. Avanzi, G. C.; Brizzi, M. F.; Giannotti, J., et al. The MO7E human leukemic factor-dependent cell line provides a rapid and sensitive bioassay for the human cytokines GM-CSF and IL-3. J. Cell. Physiol. 145:458–464; 1990.

    Article  PubMed  CAS  Google Scholar 

  3. Bhayani, H.; Falcoff, R. T-cell surface antigens defined by monoclonal antibodies involved in the induction of human interferon-γ and interleukin-2. Cell. Immunol. 94:536–546; 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Burdach, S.; Zessack, N.; Dilloo, D., et al. Differential regulation of lymphokine production by distinct subunits of the T cell interleukin 2 receptor. J. Clin. Invest. 87:2114–2121; 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Cesano, A.; Santoli, D. Two unique human leukemic T-cell lines endowed with a stable cytotoxic function and a different spectrum of target reactivity analysis and modulation of their lytic mechanisms. In Vitro Cell. Dev. Biol. 28A:648–656; 1992.

    PubMed  CAS  Google Scholar 

  6. Chan, S. H.; Kobayashi, M.; Santoli, D., et al. Mechanisms of interferon-γ induction by natural killer cell stimulatory factor (NKSF/IL-12): role of transcription and mRNA stability in the synergistic interaction between NKSF and IL-2. J. Immunol. 148:92–98; 1992.

    PubMed  CAS  Google Scholar 

  7. Chan, S.; Perussia, B.; Gupta, J. W., et al. Induction of interferon γ production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducters. J. Exp. Med. 173:869–879; 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Annu. Rev. Biochem. 162:156–179; 1987.

    CAS  Google Scholar 

  9. Cuturi, M. C.; Murphy, M.; Costa-Gianni, M. P., et al. Independent regulation of tumor necrosis factor and lymphotoxin production by human peripheral blood lymphocytes. J. Exp. Med. 165:1581–1594; 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Grimm, E. A.; Rosenberg, S. A. The human lymphokine activated killer cell phenomenon. Lymphokines 9:279–298; 1983.

    Google Scholar 

  11. Gromo, G.; Geller, R. L.; Inverardi, L., et al. Signal requirements in the stepwise functional maturation of cytotoxic T-lymphocytes. Nature 327:424–426; 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Itoh, K.; Siba, K.; Shimizu, Y., et al. Generation of activated killer (AK) cells by recombinant interleukin-2 (rIL-2) in collaboration with interferon-γ. J. Immunol. 134:3124–3129; 1985.

    PubMed  CAS  Google Scholar 

  13. Kasahara, T.; Djeu, J. Y.; Dougherty, S. F., et al. Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: interleukin 2, interferon, and colony-stimulating factor. J. Immunol. 131:2379–2385; 1983.

    PubMed  CAS  Google Scholar 

  14. Kehrl, J. H.; Alvarez-Mon, M.; Delsin, G. A., et al. Lymphotoxin is an important T cell-derived growth factor for human B cells. Science 238:1144–1146; 1987.

    Article  PubMed  CAS  Google Scholar 

  15. Murphy, M.; Loudon, R.; Kobayashi, M., et al. Gamma interferon and lymphotoxin, released by activated T cells, synergize to inhibit granulocyte-monocyte colony formation. J. Exp. Med. 164:263–279; 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Novelli, F.; Giovarelli, M.; Reber-Liske, R., et al. Blockade of physiologically secreted IFN-γ inhibits human T lymphocyte and natural killer cell activation. J. Immunol. 147:1445–1452; 1991.

    PubMed  CAS  Google Scholar 

  17. O’Connor, R.; Cesano, A.; Lange, B., et al. Growth factor requirements of childhood acute T lymphoblastic leukemias: correlation between presence of chromosomal abnormalities and ability to grow permanently in vitro. Blood 77:1534–1545; 1991.

    PubMed  CAS  Google Scholar 

  18. Ostensen, M. E.; Thiele, D. L.; Lipsky, P. E. Tumor necrosis factor-α enhances cytolytic activity of human natural killer cells. J. Immunol. 138:4185–4191; 1987.

    PubMed  CAS  Google Scholar 

  19. Owen-Schaub, L. B.; Gutterman, J. U.; Grimm, E. A. Synergy of tumor necrosis factor and interleukin 2 in the activation of human cytotoxic lymphocytes: effect of tumor necrosis factor alpha and interleukin 2 in the generation of human lymphokine-activated killer cell cytotoxicity. Cancer Res. 48:788–792; 1988.

    PubMed  CAS  Google Scholar 

  20. Pestka, S.; Langer, J. A.; Zoon, K. C., et al. Interferons and their action. Annu. Rev. Biochem. 56:727–777; 1987.

    Article  PubMed  CAS  Google Scholar 

  21. Peters, P. M.; Ortaldo, J. R.; Shalaby, M. R., et al. Natural killer-sensitive targets stimulate production of TNF-α but not TNF-β (lymphotoxin) by highly purified human peripheral blood large granular lymphocytes. J. Immunol. 137:2592–2598; 1986.

    PubMed  CAS  Google Scholar 

  22. Phillip, R.; Epstein, L. B. Tumor necrosis factor as an immunomodulator and mediator of monocyte cytotoxicity induced by itself, gamma interferon, and interleukin 1. Nature 323:86–89; 1986.

    Article  Google Scholar 

  23. Santoli, D.; O’Connor, R.; Cesano, A., et al. Synergistic and antagonistic effects of IL-1α and IL-4, respectively, on the IL-2-dependent growth of a T cell receptor-γδ+ human T leukemic cell line. J. Immunol. 144:4703–4711; 1990.

    PubMed  CAS  Google Scholar 

  24. Scheurich, P.; Thoma, B.; Ücer, U., et al. Immunoregulatory activity of recombinant human tumor necrosis factor (TNF)-α: induction of TNF receptors on human T cells and TNF-α-mediated enhancement of T cell responses. J. Immunol. 138:1786–1790; 1987.

    PubMed  CAS  Google Scholar 

  25. Smith, K. A. Cytokines in the nineties. Eur. Cytokine Net. 1:7–21; 1990.

    CAS  Google Scholar 

  26. Yang, S. C.; Owen-Schaub, L.; Grimm, E. A., et al. Induction of lymphokine-activated killer cytotoxicity with interleukin-2 and tumor necrosis factor-α against primary lung cancer targets. Cancer Immunol. Immunother. 29:193–198; 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesano, A., Santoli, D. Inducible expression of granulocyte-macrophage colony-stimulating factor, tumor necrosis FACTOR-α, and INTERFERON-γ in two human cytotoxic leukemic T-cell lines. In Vitro Cell Dev Biol - Animal 28, 657–662 (1992). https://doi.org/10.1007/BF02631042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631042

Key words

Navigation