Skip to main content
Log in

Antioxidant enzymes in the differentiated Caco-2 cell line

  • Regual Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Injury to the gastrointestinal tract by oxygen dependent processes is important in ischemia, inflammatory bowel disease, and necrotizing enterocolitis. The Caco-2 cell line is an important tool in assessing various gastrointestinal functions and offers a unique opportunity to assess gastrointestinal oxidant metabolism on a cellular level. However, some Caco-2 cell functions change with time after confluence. To determine if antioxidant enzyme activity changes during differentiation, Caco-2 cells were grown to confluence, and superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase activities and specific mRNA content were quantitated. With time after confluence the enzymes demonstrated a small, but statistically significant increase in activity. Neither superoxide dismutase nor glutathione peroxidase mRNA levels correlated with enzyme activity changes. Catalase mRNA levels increased as catalase activity increased. Thus, differentiated Caco-2 cells express superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase activities and the superoxide dismutase, glutathione peroxidase, and catalase genes. Superoxide dismutase activity and glutathione peroxidase activity do not correlate with mRNA levels, and suggest that regulation may be at a level other than transcription. The correlation between catalase activity and catalase mRNA suggests differentiation may occur at transcription. If Caco-2 cells are used to elucidate oxidative metabolism, changes in activities of antioxidant enzymes as a function of cell differentiation should be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babior, B. M.; Kipnes, R. S.; Curnutte, J. T. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest. 52:741–744; 1976.

    Google Scholar 

  2. Baker, S. S.; Baker, R. D.; Campbell, C. L. Short-term malnutrition in neonatal rabbits: effect on function and synthesis of free radical metabolizing enzymes in the gastrointestinal tract. J. Pediatr. Gastro. Nutr. 11:247–253; 1990.

    Article  CAS  Google Scholar 

  3. Baker, S. S.; Campbell, C. L. Rat enterocyte injury by oxygen dependent processes. Gastroenterology 101:716–720; 1991.

    PubMed  CAS  Google Scholar 

  4. Beutler, E. A manual of biochemical methods. New York: Gruen and Stratton; 1975.

    Google Scholar 

  5. Chada, S.; Whitney, C.; Newburger, P. E. Post-transcriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line. Blood 74:2535–2541; 1989.

    PubMed  CAS  Google Scholar 

  6. Chung, Y. S.; Song, I. S.; Erickson, R. H., et al. Effect of growth and sodium butyrate on brush border membrane associated hydrolases on human colorectal cancer cell lines. Cancer Res. 45:2976–2980; 1985.

    PubMed  CAS  Google Scholar 

  7. Craven, P. A.; Pfanstiel, J.; DeRubertis, F. R. Role of reactive oxygen in bile salt stimulation of colonic epithelial proliferation. J. Clin. Invest. 77:850–859; 1986.

    PubMed  CAS  Google Scholar 

  8. Dalsing, M. C.; Grosfeld, J. L.; Shiffler, M. A., et al. Superoxide dismutase: a cellular protective enzyme in bowel ischemia. J. Surg. Res. 34:589–596; 1983.

    Article  PubMed  CAS  Google Scholar 

  9. Denhardt, D. T. A membrane filter technique for detection of complementary DNA. Biochem. Biophys. Res. Commun. 23:641–646; 1966.

    Article  PubMed  CAS  Google Scholar 

  10. Feinberg, A. P.; Vogelstein, B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:5–13; 1983.

    Article  Google Scholar 

  11. Field, F. J.; Albright, E.; Mathur, S. N. Regulation of cholesterol esterification by micellar cholesterol in CaCo-2 cells. J. Lipid Res. 28:1057–1066; 1987.

    PubMed  CAS  Google Scholar 

  12. Flohe, L.; Gunzler, W. A. Assays of glutathione peroxidase. Methods Enzymol. 105:114–121; 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Ginsburg, D.; Handin, R. I.; Bonthron, D. T., et al. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science 228:1401–1406; 1985.

    Article  PubMed  CAS  Google Scholar 

  14. Giuliano, A. P.; Wood, R. J. Vitamin D-regulated calcium transport in Caco-2 cells: unique in vitro model. Am. J. Physiol. 260:G207-G212; 1991.

    PubMed  CAS  Google Scholar 

  15. Glatzle, D.; Korner, W. F.; Christeller, S., et al. Method for the detection of biochemical riboflavin deficiency. Stimulation of NADPH2-dependent glutathione reductase from human erythrocytes by FAD in vitro. Investigation of the vitamin B2 status in healthy people and geriatric patients. Int. J. Vitam. Nutr. Res. 40:166–183; 1970.

    CAS  Google Scholar 

  16. Goldberg, D. A. Isolation and partial characterization of the drosophila alcohol dehydrogenase gene. Proc. Natl. Acad. Sci. USA 77:5794–5798; 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Granger, D. N.; Hollwarth, M. E.; Parks, D. A. Ischemiareperfusion injury: role of oxygen-derived free radicals. Acta Physiol. Scand. Suppl. 548:47–62; 1986.

    PubMed  CAS  Google Scholar 

  18. Grasset, E.; Bernabeu, J.; Pinto, M. Epithelial properties of human colonic carcinoma cell line Caco-2: effect of secretagogues. Am. J. Physiol. 248:C410-C418; 1985.

    PubMed  CAS  Google Scholar 

  19. Grasset, E.; Pinto, M.; Dussaulx, E., et al. Epithelial properties of human colon carcinoma cell line Caco-2: electrical parameters. Am. J. Physiol. 247:C260-C267; 1984.

    PubMed  CAS  Google Scholar 

  20. Hauri, H. P.; Sterchi, E. E.; Bienz, D., et al. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J. Cell. Biol. 101:838–851; 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Kam, N. T. P.; Albright, E.; Mathur, S. N., et al. Inhibition of acylcoenzyme A: cholesterol acyltransferase activity in CaCo-2 cells results in intracellular triglyceride accumulation. J. Lipid Res. 30:371–377; 1989.

    PubMed  CAS  Google Scholar 

  22. Kontos, H. A.; Wei, E. P.; Ellis, E. F., et al. Appearance of superoxide anion radical in cerebral extracellular space during increased prostaglandin synthesis in cats. Circ. Res. 57:142–151; 1985.

    PubMed  CAS  Google Scholar 

  23. Lerach, H.; Diamond, D.; Wozney, J., et al. RNA molecular weight determination by gel electrophoresis under denaturing conditions: a critical re-examination. Biochemistry 16:4743–4751; 1972.

    Article  Google Scholar 

  24. Lowry, O. H.; Rosebrough, M. J.; Farr, A. L., et al. Protein measurement with the Folin phenyl reagent. J. Biol. Chem. 193:265–272; 1951.

    PubMed  CAS  Google Scholar 

  25. McCord, J. M. Oxygen derived radicals: a link between reperfusion injury and inflammation. Fed. Proc. 46:2402–2406; 1987.

    PubMed  CAS  Google Scholar 

  26. Miller, J. S.; McNeill, H.; Mullane, K. M., et al. SOD prevents damage and attenuates eicosanoid release in a rabbit model of necrotizing enterocolitis. Am. J. Physiol. 255:G556-G565; 1980.

    Google Scholar 

  27. Mohrmann, I.; Mohrmann, M.; Biber, J., et al. Sodium dependent transport of Pi by an established intestinal epithelial cell line (Caco-2). Am. J. Physiol. 250:G323-G330; 1986.

    PubMed  CAS  Google Scholar 

  28. Murthy, S.; Albright, E.; Mathur, S. N., et al. Modification of CaCo-2 cell membrane fatty acid composition by eicosapentaenoic acid and palmitic acid: effect on cholesterol metabolism. J. Lipid Res. 29:773–780; 1988.

    PubMed  CAS  Google Scholar 

  29. Paoletti, F.; Aldinucci, D.; Mocali, A., et al. A sensitive spectrophotometric method for determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154:536–541; 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Parks, D. A.; Granger, D. N. Xanthine oxidase: biochemistry, distribution, and physiology. Acta Physiol. Scand. Suppl. 548:87–99; 1984.

    Google Scholar 

  31. Perry, M. A.; Wadha, S.; Parks, D. A., et al. Role of oxygen radicals in ischemia-induced lesions in the cat stomach. Gastroenterology 90:362–367; 1986.

    PubMed  CAS  Google Scholar 

  32. Peters, J. H.; Gorgen, G. R.; Kashiwase, D., et al. Redox activities of antitumor anthracyclines determined by microsomal oxygen consumption and assays for superoxide anion and hydroxyl radical generation. Biochem. Pharmacol. 35:1309–1323; 1986.

    Article  PubMed  CAS  Google Scholar 

  33. Peters, W. H. N.; Roelofs, H. M. J. Time dependent activity and expression of glutathione S-transferases in the human colon adenocarcinoma cell line Caco-2. Biochem. J. 264:613–616; 1989.

    PubMed  CAS  Google Scholar 

  34. Pinto, M.; Robine-Leon, S.; Appay, M-D., et al. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell. 47:323–330; 1983.

    Google Scholar 

  35. Ramond, J. M.; Martinot-Peignous, M.; Erlinger, S. Dome formation in human colon carcinoma cell line Caco-2 in culture. Influence of ouabain and permeable supports. Biol. Cell. 54:89–95; 1985.

    PubMed  CAS  Google Scholar 

  36. Reddy, A. P.; Hsu, B. L.; Reddy, R. P., et al. Expression of glutathione peroxidase I gene in selenium-deficient rats. Nucleic Acids. Res. 16:5557–5568; 1989.

    Article  Google Scholar 

  37. Saedi, M. S.; Smith, C. G.; Frampton, J., et al. Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochem. Biophys. Res. Commun. 153:855–861; 1988.

    Article  PubMed  CAS  Google Scholar 

  38. Toyoda, H.; Himeno, S.; Iumura, N. The regulation of glutathione peroxidase gene expression relevant to species differences and the effects of dietary selenium manipulation. Biochim. Biophys. Acta 1008:301–308; 1989.

    PubMed  CAS  Google Scholar 

  39. Turrens, J. F.; Freeman, B. A.; Levitt, J. G., et al. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch. Biochem. Biophys. 217:401–410; 1982.

    Article  PubMed  CAS  Google Scholar 

  40. Vincent, M. L.; Russell, R. M.; Sasak, V. Folic acid uptake characteristics of a human colon carcinoma cell line, CaCo-2. A newly discovered cellular modification for small intestinal epithelium. Hum. Nutr. Clin. Nutr. 39C:355–360; 1985.

    Google Scholar 

  41. Winer, J. P. Statistical principals and experimental design, 2nd ed. New York: McGraw-Hill; 1975.

    Google Scholar 

  42. Winterbourn, C. C. Evidence for the production of hydroxy radicals from the adriamycin semiquinone and hydrogen peroxide. FEBS Lett. 136:89–94; 1981.

    Article  CAS  Google Scholar 

  43. Yoshimura, S.; Takekoshi, S.; Watanabe, K., et al. Determination of nucleotide sequence of cDNA coding rat glutathione peroxidase and diminished expression of the mRNA in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 154:1024–1028; 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Yoshioka, M.; Erickson, R. H.; Matsumoto, H., et al. Expression of dipeptidyl aminopeptidase IV during enterocytic differentiation of human colon cancer (CACO-2) cells. Int. J. Cancer 47:916–921; 1991.

    Article  PubMed  CAS  Google Scholar 

  45. Youakim, A.; Pedro, A. R.; Yee, K., et al. Decrease in polylactosaminoglycans associated with lysosomal membrane glycoproteins during differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res. 49:6889–6895; 1989.

    PubMed  CAS  Google Scholar 

  46. Zweibaum, A.; Hauri, H. P.; Sterchi, E., et al. Immunohistochemical evidence obtained with monoclonal antibodies of small intestinal brush border hydrolases in human colon carcinoma and foetal colons. Int. J. Cancer 34:591–598; 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, S.S., Baker, R.D. Antioxidant enzymes in the differentiated Caco-2 cell line. In Vitro Cell Dev Biol - Animal 28, 643–647 (1992). https://doi.org/10.1007/BF02631040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631040

Key words

Navigation