Skip to main content

Advertisement

Log in

Blood-brain barrier alterations in bacterial meningitis: Development of an in vitro model and observations on the effects of lipopolysaccharide

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

To further examine the effects of purifiedHaemophilus influenzae type b lipopolysaccharide (LPS) on blood-brain barrier permeability, we have developed an in vitro model of the BBB. Microvascular endothelial cells were isolated from rat cerebral cortices by enzymatic digestion, dextran centrifugation, and separation on percoll gradients. The cells were determined to be endothelial in origin by positive fluorescent staining for Factor VIII-related antigen and the ability to take up acetylated low density lipoproteins, and their cerebral origin by the formation of junctional complexes in vitro. Cells were seeded onto semipermeable polycarbonate filters and permeability assessed by measuring traversal of radioactive albumin across the monolayer. Treatment of the cells with LPS at concentrations of 1.0µg/ml and 0.1µg/ml for 4 h led to statistically significant increases in albumin permeability of 4.6% (P=0.001) and 5.6% (P<0.001), respectively, without evidence of cell death as assessed by release of lactate dehydrogenase into the media. These results indicate that LPS significantly increases albumin permeability across a monolayer of cerebral microvascular endothelial cells in the absence of host inflammatory cells. Future studies on the effects of LPS on intracellular regulation will determine the mechanisms responsible for these alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, D. W.; Roberts, R. L.; Olson, J. J. Glial cells influence membrane-associated enzyme activity at the blood-brain barrier. Brain Res. 381:131–137; 1986.

    Article  CAS  PubMed  Google Scholar 

  2. Beck, D. W.; Vinters, H. V.; Hart, M. N., et al. Glial cells influence polarity of the blood-brain barrier. J. Neuropathol. Exp. Neurol. 43:219–224; 1984.

    CAS  PubMed  Google Scholar 

  3. Bowman, P. D.; Betz, A. L.; Ar, D., et al. Primary culture of capillary endothelium from rat brain. In Vitro 17:353–362; 1981.

    Article  CAS  PubMed  Google Scholar 

  4. Bowman, P. D.; Ennis, S. R.; Rarey, K. E., et al. Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann. Neurol. 14:396–402; 1983.

    Article  CAS  PubMed  Google Scholar 

  5. Bradbury, M. W. B. The structure and function of the blood-brain barrier. Fed. Proc. 43:186–190; 1984.

    CAS  PubMed  Google Scholar 

  6. Brett, J.; Gerlach, H.; Nawroth, P., et al. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. J. Exp. Med. 169:1977–1991; 1989.

    Article  CAS  PubMed  Google Scholar 

  7. Garson, M. P.; Haudenschild, C. C. Microvascular endothelium and pericytes: high yield, low passage cultures. In Vitro Cell. Dev. Biol. 22:344–354; 1986.

    Article  Google Scholar 

  8. Chopra, J.; Joist, J. H.; Webster, R. O. Loss of51chromium, lactate dehydrogenase, and111indium as indicators of endothelial cell injury. Lab. Invest. 57:578–584; 1987.

    CAS  PubMed  Google Scholar 

  9. Crone, C.; Olesen, S. P. Electrical resistance of brain microvascular endothelium. Brain Res. 241:49–55; 1982.

    Article  CAS  PubMed  Google Scholar 

  10. Diglio, C. A.; Grammas, P.; Giacomelli, F., et al. Primary culture of rat cerebral microvascular endothelial cells. Isolation, growth, and characterization. Lab. Invest. 46:554–563; 1982.

    CAS  PubMed  Google Scholar 

  11. Dorovini-Zis, K.; Bowman, P. D.; Betz, A. L., et al. Formation of a barrier by brain microvessel endothelial cells in culture. Fed. Proc. 46:2521–2522; 1987.

    CAS  PubMed  Google Scholar 

  12. Gartner, S. L.; Sieckmann, D. G.; Kang, Y. H., et al. Effects of lipopolysaccharide, lipid A, lipid X, and phorbol ester on cultured bovine endothelial cells. Lab. Invest. 59:181–191; 1988.

    CAS  PubMed  Google Scholar 

  13. Goldstein, G. W.; Betz, A. L. The blood-brain barrier. Sci. Am. 255:74–83; 1986.

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein, G. W.; Betz, A. L.; Bowman, P. D. Use of isolated brain capillaries and cultured endothelial cells to study the blood-brain barrier. Fed. Proc. 43:191–195; 1984.

    CAS  PubMed  Google Scholar 

  15. Harlan, J. M.; Harker, L. A.; Reidy, M. A., et al. Lipopolysaccharide-mediated bovine endothelial cell injury in vitro. Lab. Invest. 48:269–274; 1983.

    CAS  PubMed  Google Scholar 

  16. Henning, B.; Goldblum, S.; McClain, C. Interleukin-1 and tumor necrosis factor/cachectin increase endothelial permeability in vitro. J. Leuk. Biol. 42:551; 1987.

    Google Scholar 

  17. Jaffe, E. A.; Nachman, R. L.; Becker, C. G., et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52:2745–2756; 1973.

    CAS  PubMed  Google Scholar 

  18. Janzer, R. C.; Raff, M. C. Astrocytes induce blood-brain barrier properties in endothelial cells. Nature 325:253–257; 1987.

    Article  CAS  PubMed  Google Scholar 

  19. Lesse, A. J.; Moxon, E. R.; Zwahlen, A., et al. Role of cerebrospinal fluid pleocytosis andHaemophilus influenzae tybe b capsule on blood-brain barrier permeability during experimental meningitis in the rat. J. Clin. Invest. 82:102–109; 1988.

    CAS  PubMed  Google Scholar 

  20. Libby, P.; Ordovas, J. M.; Auger, K. R., et al. Endotoxin and tumor necrosis factor induce interleukin 1 gene expression in adult human vascular endothelial cells. Am. J. Pathol. 124:179–185; 1986.

    CAS  PubMed  Google Scholar 

  21. Maxwell, K.; Berliner, J. A.; Cancilla, P. A. Induction of γ-glutamyl transpeptidase in cultured cerebral endothelial cells by a product released by astrocytes. Brain Res. 410:309–314; 1987.

    Article  CAS  PubMed  Google Scholar 

  22. Meyrick, B.; Hoover, R.; Jones, M. R., et al. In vitro effects of endotoxin on bovine and sheep lung microvascular and pulmonary artery endothelial cells. J. Cell. Physiol. 138:165–174; 1989.

    Article  CAS  PubMed  Google Scholar 

  23. Miossec, P.; Cavender, D.; Ziff, M. Production of interleukin-1 by human endothelial cells. J. Immunol. 136:2486–2491; 1986.

    CAS  PubMed  Google Scholar 

  24. Mustafa, M. M.; Ramilo, O.; Olsen, K. D., et al. Tumor necrosis factor in mediating experimentalHaemophilus influenzae type b meningitis. J. Clin. Invest. 84:1253–1259; 1989.

    CAS  PubMed  Google Scholar 

  25. Nawroth, P. P.; Bank, I.; Handley, D., et al. Tumor necrosis factor/cachectin interacts with endothelial cell receptors to induce release of interleukin 1. J. Exp. Med. 163:1363–1375; 1986.

    Article  CAS  PubMed  Google Scholar 

  26. Pardridge, W. M.; Nowlin, D. M.; Choi, T. B., et al. Brain capillary 46,000 dalton protein is cytoplasmic actin and is localized to endothelial plasma membrane. J. Cereb. Blood Flow Metab. 9:675–680; 1989.

    CAS  PubMed  Google Scholar 

  27. Pardridge, W. M.; Yang, J.; Eisenberg, J., et al. Antibodies to blood-brain barrier bind selectively to brain capillary endothelial lateral membranes and to a 46 K protein. J. Cereb. Blood Flow Metab. 6:203–211; 1989.

    Google Scholar 

  28. Quagliarello, V. J.; Long, W. J.; Scheld, W. M. Morphologic alterations of the blood-brain barrier with experimental meningitis in the rat. Temporal sequence and role of encapsulation. J. Clin. Invest. 77:1084–1095; 1986.

    CAS  PubMed  Google Scholar 

  29. Quagliarello, V. J.; Long, W. J.; Scheld, W. M. Human interleukin-1 modulates blood-brain barrier injury in vivo. In: Program and abstracts of the 27th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC: American Society for Microbiology; 1987:204.

    Google Scholar 

  30. Rutten, M. J.; Hoover, R. L.; Karnovsky, M. J. Electrical resistance and macromolecular permeability of brain endothelial monolayer cultures. Brain Res. 425:301–310; 1987.

    Article  CAS  PubMed  Google Scholar 

  31. Sande, M. A.; Täuber, M. G.; Scheld, W. M., et al. Pathophysiology of bacterial meningitis: summary of the workshop. Pediatr. Infect. Dis. J. 8:929–933; 1989.

    Article  CAS  PubMed  Google Scholar 

  32. Tao-Cheng, J. H.; Nagy, Z.; Brightman, M. W. Tight junctions of brain endothelium in vitro are enhanced by astroglia. J. Neurosci. 7:3293–3299; 1987.

    CAS  PubMed  Google Scholar 

  33. Thorton, S. C.; Mueller, S. N.; Levine, E. M. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science 222:623–625; 1983.

    Article  Google Scholar 

  34. Tunkel, A. R.; Wispelwey, B.; Scheld, W. M. Bacterial meningitis: recent advances in pathophysiology and treatment. Ann. Intern. Med. 112:610–623; 1990.

    CAS  PubMed  Google Scholar 

  35. Voyta, J. C.; Via, D. P.; Butterfield, C. E., et al. Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99:2034–2040; 1984.

    Article  CAS  PubMed  Google Scholar 

  36. Waggener, J. D. The pathophysiology of bacterial meningitis and cerebral abscesses: an anatomical interpretation. Adv. Neurol. 6:1–17; 1974.

    CAS  PubMed  Google Scholar 

  37. Wispelwey, B.; Hansen, E. J.; Scheld, W. M.Haemophilus influenzae outer membrane vesicle-induced blood-brain barrier permeability during experimental meningitis. Infect. Immun. 57:2559–2562; 1989.

    CAS  PubMed  Google Scholar 

  38. Wispelwey, B.; Lesse, A. J.; Hansen, E. J., et al.Haemophilus influenzae lipopolysaccharide-induced blood brain barrier permeability during experimental meningitis in the rat. J. Clin. Invest. 82:1339–1346; 1988.

    Article  CAS  PubMed  Google Scholar 

  39. Wispelwey, B.; Long, W. J.; Castracane, J. M., et al. Cerebrospinal fluid interleukin-1 activity following intracisternal inoculation ofHaemophilus influenzae lipopolysaccharide into rats. Program and abstracts of the 28th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC: American Society for Microbiology; 1988:265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a research grant (RO1-AI17904) and a training grant (T32-AI07046) from the National Institute of Allergy and Infectious Diseases, Bethesda, MD. W. Michael Scheld is an established investigator of the American Heart Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunkel, A.R., Rosser, S.W., Hansen, E.J. et al. Blood-brain barrier alterations in bacterial meningitis: Development of an in vitro model and observations on the effects of lipopolysaccharide. In Vitro Cell Dev Biol - Animal 27, 113–120 (1991). https://doi.org/10.1007/BF02630996

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02630996

Key words

Navigation